

Azure Serverless Computing
Cookbook

Build applications hosted on serverless architecture using
Azure Functions

Praveen Kumar Sreeram

BIRMINGHAM - MUMBAI

Azure Serverless Computing Cookbook
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2017

Production reference: 1160817

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78839-082-8

www.packtpub.com

http://www.packtpub.com

Credits

Author
Praveen Kumar Sreeram

Copy Editor
Stuti Srivastava

Reviewer
Florian Klaffenbach

Project Coordinator
Virginia Dias

Commissioning Editor
Vijin Boricha

Proofreader
Safis Editing

Acquisition Editor
Shrilekha Inani

Indexer
Aishwarya Gangawane

Content Development Editor
Sweeny Dias

Graphics
Kirk D'Penha

Technical Editor
Komal Karne

Production Coordinator
Aparna Bhagat

Foreword
It is my pleasure to write the foreword for Azure Serverless Computing Cookbook by Praveen
Kumar Sreeram. Azure Functions is one of the key Platform as a service (PaaS) components
from Microsoft and provides a rich experience for the event-driven, compute-on-demand
programming model. To use Azure Functions, the user is not required to be a master of any
specific programming language; rather, they can use their language of choice, such as C#,
Node.js, JavaScript, PowerShell, and so on, to create highly scalable functions.

Azure Serverless Computing Cookbook shows the author's dedication and hard work to come
out with a gem that will not only benefit developers and architects, but also enterprises that
want to leverage serverless solutions in Azure. The author has thoroughly gone through
each parameter and every consideration in tackling the concept of Azure Functions. You
will surely like the way numerous code samples and use cases blend together to create a
knowledge repository for you to start with cloud development on the go.

I would like to thank Packt, Mohd. Riyan Khan, and Shrilekha Inani for involving me in
evaluating the content and giving me the opportunity to write this foreword.

Abhishek Kumar

Microsoft Azure MVP and Consultant – Datacom New Zealand

About the Author
Praveen Kumar Sreeram works as a Solution Architect at PennyWise Solutions (an Ogilvy
and Mather Company). He has over 12 years of experience in the field of development,
analysis, design, and delivery of applications of various technologies, including custom web
development using ASP.NET and MVC to building mobile apps using the cross-platform
technology Xamarin for domains such as insurance, telecom, and wireless expense
management. He has been awarded two times as the Most Valuable Professional by one of
the most leading social community websites, CSharpCorner, for his contributions toward
writing articles and helping community members, mostly on Microsoft Azure. He is highly
focused on learning about technology. He is an avid blogger who writes about his learning
at his personal blog, called PraveenKumarSreeram and you can also follow him on twitter
at @PrawinSreeram. His current focus is on analyzing business problems and providing
technical solutions for various projects related to Microsoft Azure and Sitecore.

First of all, my thanks go to the great editorial team at Packt Publishing for identifying my
potential and giving me the opportunity to write this book, especially Shrilekha Inani,
Sweeny Dias, Komal Karne, Yogesh Mishra, and the whole team who encouraged me a lot.
Without them, I couldn’t have done it.

I would like to thank my current employer, PennyWise Solutions, all of my management
team, especially the CTOs, Mr. Pavan Pochu and Mr. Arup Dutta, for guiding me all the
way, and my lovely colleagues who encouraged me a lot.

I would like to thank my grandma Neelavatamma; dad, Kamalakar; mom, Seetha; my better
half, Haritha; and my little princess, Rithwika; for being in my life and giving me courage
all the time.

I would like to express my deepest gratitude to Medeme Narasimhulu and Medeme
Saraswathi (my uncle and aunt) who have been supporting me and encouraging me right
from my college days. Without them, I wouldn't have even become a software professional.

About the Reviewer
Florian Klaffenbach started his IT career in 2004 as a 1st and 2nd level IT support
technician and IT salesman trainee for a B2B online shop. After that, he changed to a small
company working as IT project manager for planning, implementing, and integrating from
industrial plants and laundries into enterprise IT. After a few years, he changed course to
Dell Germany. There, he started from scratch as an enterprise technical support analyst and
later worked on a project to start Dell technical communities and support over social media
in Europe and outside of the US. Currently, he works as a Technology Solutions
Professional for Microsoft, specializing in hybrid Microsoft cloud infrastructured.

Additionally, he is active as a Microsoft blogger and lecturer. He blogs on his own page,
Datacenter-Flo.de, and the Brocade Germany community. Together with a very good friend,
he founded Windows Server User Group Berlin to create a network of Microsoft IT Pros in
Berlin. Florian maintains a very tight network with many vendors such as Cisco, Dell, and
Microsoft and several communities. This helps him grow his experience and get the best out
of a solution for his customers. Since 2016, he has also been the Co-Chairman of the Azure
community Germany. In April 2016, Microsoft awarded Florian the Microsoft Most
Valuable Professional for Cloud and Datacenter Management. In 2017, after joining
Microsoft, Florian became an MVP reconnect member.

Florian has worked for several companies and Microsoft partners such as Dell Germany,
CGI Germany, and msg services ag. Now he has joined Microsoft Germany in a technical
presales role and supports customers in getting started with hybrid cloud infrastructures
and topics.

He has also worked on the following books:

Taking Control with System Center App Controller
Microsoft Azure Storage Essentials
Mastering Cloud Development using Microsoft Azure
Mastering Microsoft Deployment Toolkit 2013
Implementing Azure Design Patterns
Windows Server 2016 Cookbook
Mastering Active Directory
Exchange PowerShell Cookbook
Implementing Azure Solutions

Acknowledgments
I want to thank Packt Publishing for giving me the chance to review the book as well as my
employer and my family for being accommodating of the time investment I have made in
this project. There is a special thanks I need to make to Virginia Dias from Packt. It is always
awesome to be a reviewer on her projects, and it’s a great pleasure to work with her.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details. At www.PacktPub.com, you can also read a
collection of free technical articles, sign up for a range of free newsletters and receive
exclusive discounts and offers on Packt books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1788390822.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1788390822

Table of Contents
Preface 1

Chapter 1: Accelerate Your Cloud Application Development Using Azure
Function Triggers and Bindings 7

Introduction 7
Building a backend Web API using HTTP triggers 8

Getting ready 9
How to do it… 9
How it works… 13
See also 13

Persisting employee details using Azure Storage table output bindings 13
Getting ready 13
How to do it... 14
How it works... 18

Understanding more about Storage Connection 19
What is Azure Table storage service? 20
Partition key and row key 20

There's more... 20
Saving the profile images to Queues using Queue output bindings 20

Getting ready 21
How to do it… 21
How it works… 24
There's more… 25
See also 25

Storing the image in Azure Blob storage 25
Getting ready 25
How to do it... 26
How it works... 28
There's more... 28
See also... 28

Cropping an image using ImageResizer trigger 29
Getting ready 29
How to do it... 30
How it works... 33
See also 34

Table of Contents

[ii]

Chapter 2: Working with Notifications Using SendGrid and Twilio
Services 35

Introduction 35
Sending an email notification to the administrator of the website using
the SendGrid service 36

Getting ready 36
Creating a SendGrid account 36
Generating the SendGrid API key 39
Configuring the SendGrid API key with the Azure Function app 40

How to do it... 41
How it works... 43
See also 44

Sending an email notification to the end user dynamically 44
Getting ready 44
How to do it... 44
How it works... 46
There's more... 47
See also 48

Implementing email logging in the Blob storage 48
How to do it... 49
How it works... 50

Modifying the email content to include an attachment 51
Getting ready 51
How to do it... 51

Customizing the log file name using IBinder interface 51
Adding an attachment to the email 53

There's more... 53
Sending SMS notification to the end user using the Twilio service 54

Getting ready 54
How to do it... 56
How it works... 58

Chapter 3: Seamless Integration of Azure Functions with Other Azure
Services 59

Introduction 59
Using Cognitive Services to locate faces from the images 60

Getting ready 60
Creating a new Computer Vision API account 60
Configuring App settings 62

How to do it... 62

Table of Contents

[iii]

How it works... 67
There's more... 68

Azure SQL Database interactions using Azure Functions 69
Getting ready 69
How to do it... 71
How it works... 74

Processing a file stored in OneDrive using an external file trigger 74
Getting ready 75
How to do it... 75

Monitoring tweets using Logic Apps and notifying when popular users
tweet 81

Getting ready 81
How to do it... 82

Create a new Logic App 82
Designing the Logic App with Twitter and Gmail connectors 84
Testing the Logic App functionality 89

How it works... 90
See also 90

Integrating Logic Apps with Azure Functions 90
Getting ready 90
How to do it... 91
There's more... 96
See also 96

Chapter 4: Understanding the Integrated Developer Experience of
Visual Studio Tools for Azure Functions 97

Introduction 98
Creating the function app using Visual Studio 2017 99

Getting ready 99
How to do it... 100
How it works... 103
There's more... 103

Debugging C# Azure Functions on a local staged environment using
Visual Studio 2017 103

Getting ready 104
How to do it... 104
How it works... 108
There's more... 109

Connecting to the Azure Cloud storage from local Visual Studio
environment 109

Table of Contents

[iv]

Getting ready 109
How to do it... 110
How it works... 114
There's more... 114
See also 115

Deploying the Azure Function app to Azure Cloud using Visual Studio 115
How to do it... 115
There's more... 119
See also 120

Debugging live C# Azure Function hosted on the Microsoft Azure
Cloud environment using Visual Studio 120

Getting ready 120
How to do it... 121
See also 124

Chapter 5: Exploring Testing Tools for the Validation of Azure
Functions 125

Introduction 125
Testing Azure Functions 126

Getting ready 126
How to do it... 127

Testing HTTP triggers using Postman 127
Testing Blob trigger using the Microsoft Storage Explorer 128
Testing Queue trigger using the Azure Management portal 131

There's more... 134
Testing an Azure Function on a staged environment using deployment
slots 134

How to do it... 135
There's more 143

Load testing Azure Functions using VSTS 144
Getting ready 144
How to do it... 144
There's more... 149
See also 149

Creating and testing Azure Function locally using Azure CLI tools 150
Getting ready 150
How to do it... 151

Testing and validating Azure Function responsiveness using
Application Insights 155

Getting ready 156

Table of Contents

[v]

How to do it... 157
How it works... 161
There's more... 161

Chapter 6: Monitoring and Troubleshooting Azure Serverless Services 162

Introduction 162
Monitoring your Azure Functions 163

Getting ready 163
How to do it... 164
There's more... 169

Monitoring Azure Functions using Application Insights 169
Getting ready 169
How to do it... 170
How it works... 173
There's more ... 173

Pushing custom telemetry details to analytics of Application Insights 173
Getting ready 175
How to do it... 175

Creating AI function 175
Configuring access keys 177
Integrating and testing AI query 180
Configuring the custom derived metric report 183

How it works... 185
See also 185

Sending application telemetry details via email 185
Getting ready 186
How to do it... 186
How it works... 189
There's more... 189
See also 189

Integrating real-time AI monitoring data with Power BI using Azure
Functions 190

Getting ready 191
How to do it... 191

Configuring Power BI with dashboard, dataset, and push URI 191
Creating Azure AI real-time Power BI - C# function 197

How it works... 201
There's more... 201

Chapter 7: Code Reusability and Refactoring the Code in Azure
Functions 202

Table of Contents

[vi]

Introduction 202
Creating a common code repository for better manageability within a
function app 203

How to do it... 203
How it works... 207
There's more... 207
See also 208

Shared code across Azure Functions using class libraries 209
How to do it... 209
How it works... 212
There's more... 212
See also 213

Azure Functions and precompiled assemblies 213
Getting ready... 213
How to do it... 213

Creating a class library using Visual Studio 213
Creating a new HTTP trigger Azure Function 215

How it works... 217
There's more... 217
See also 218

Migrating legacy C# application classes to Azure Functions using
PowerShell 219

Getting ready 220
How to do it... 220

Creating an application using Visual Studio 220
Creating a new PowerShell Azure Function 221

How it works... 224
See also 224

Using strongly typed classes in Azure Functions 224
Getting ready 225
How to do it... 225
How it works... 228
There's more... 228
See also 228

Chapter 8: Developing Reliable and Durable Serverless Applications
Using Durable Functions 229

Introduction 229
Configuring Durable Functions in the Azure Management portal 230

Getting ready 230

Table of Contents

[vii]

How to do it... 230
There's more... 233
See also 234

Creating a hello world Durable Function app 234
Getting ready 234
How to do it... 234

Creating HttpStart Function - the Orchestrator client 235
Creating Orchestrator function 238
Creating Activity function 239

How it works... 241
There's more... 241
See also 241

Testing and troubleshooting Durable Functions 242
Getting ready 242
How to do it... 242
See also 244

Implementing multithreaded reliable applications using Durable
Functions 244

Getting ready 245
How to do it... 245

Creating Orchestrator function 245
Creating Activity function GetAllCustomers 246
Creating Activity function CreateBARCodeImagesPerCustomer 247

How it works... 250
There's more... 250
See also 250

Chapter 9: Implement Best Practices for Azure Functions 252

Adding multiple messages to a Queue using the IAsyncCollector
function 252

Getting ready 253
How to do it... 254
How it works... 256
There's more... 256

Implementing defensive applications using Azure Functions and
Queue triggers 257

Getting ready 257
How to do it... 257

CreateQueueMessage - C# Console Application 258
Developing the Azure Function - Queue trigger 259
Running tests using the Console Application 260

Table of Contents

[viii]

How it works... 261
There's more... 262

Handling massive ingress using Event Hub for IoT and similar
scenarios 262

Getting ready 262
How to do it... 263

Creating an Azure Function Event Hub trigger 263
Developing a Console Application that simulates IoT data 266

Enabling authorization for function apps 269
Getting ready 269
How to do it... 270
How it works... 271
There's more... 272
See also 272

Controlling access to Azure Functions using function keys 272
How to do it... 273

Configuring the function key for each application 273
Configuring one host key for all the functions in a single function app 274

There's more... 276
See also 277

Chapter 10: Implement Continuous Integration and Deployment of
Azure Functions Using Visual Studio Team Services 278

Introduction 278
Prerequisites 280

Continuous integration - creating a build definition 280
How to do it... 280
How it works... 283
There's more... 284
See also 285

Continuous integration - queuing the build and trigger manually 285
Getting ready 285
How to do it... 285
See also 288

Configuring and triggering the automated build 289
How to do it... 289
How it works... 292
There's more... 292
See also 294

Creating a release definition 294

Table of Contents

[ix]

Getting ready 294
How to do it... 295
How it works... 301
There's more... 302
See also 302

Trigger the release automatically 302
Getting ready 302
How to do it... 303
How it works... 305
There's more... 305
See also 305

Index 306

Preface
Microsoft provides a solution to easily run small segments of code in the cloud with Azure
Functions. Azure Functions provides solutions for processing data, integrating systems, and
building simple APIs and microservices.

The book starts with intermediate-level recipes on serverless computing along with some
use cases on the benefits and key features of Azure Functions. Then, we'll deep dive into the
core aspects of Azure Functions, such as the services it provides, how you can develop and
write Azure Functions, and how to monitor and troubleshoot them.

Moving on, you'll get practical recipes on integrating DevOps with Azure Functions, and
providing continuous deployment with Visual Studio Team Services. The book also
provides hands-on steps and tutorials based on real-world serverless use cases to guide you
through configuring and setting up your serverless environments with ease. Finally, you'll
see how to manage Azure Functions, providing enterprise-level security and compliance to
your serverless code architecture.

By the end of this book, you will have all the skills required to work with serverless code
architectures, providing continuous delivery to your users.

What this book covers
Chapter 1, Accelerate Your Cloud Application Development Using Azure Function Triggers and
Bindings, goes through how the Azure Functions Runtime provides templates that can be
used to quickly integrate different Azure services for your application needs. It reduces all
of the plumbing code so that you can focus on just your application logic. In this chapter,
you will learn how to build web APIs and bindings related to Azure Storage Services.

Chapter 2, Working with Notifications Using SendGrid and Twilio Services, deals with how
communication is one of the most critical part of any business requirement. In this chapter,
you will learn how easy it is to connect your business requirements written in Azure
Functions with the most popular communication services such as SendGrid (for email) and
Twilio (for SMS).

Chapter 3, Seemless Integration of Azure Functions with Other Azure Services, discusses how
Azure provides many connectors that you could leverage to integrate your business
applications with other systems pretty easily. In this chapter, you will learn how to
integrate Azure Functions with cognitive services, Logic Apps, and OneDrive.

Preface

[2]

Chapter 4, Understanding the Integrated Developer Experience of Visual Studio Tools for Azure
Functions, builds on the previous chapters and teaches you how to develop Azure Functions
using Visual Studio, which provides you many features such as Intellisense, local and
remote debugging, and most of the regular development features.

Chapter 5, Exploring Testing Tools for the Validation of Azure Functions, helps you understand
different tools and processes that help you streamline your development and quality
control processes. You will also learn how to create loads using VSTS load testing and
monitor the performance of VMs using the reports provided by Application Insights.
Finally, you will also learn how to configure alerts that notify you when your apps are not
responsive.

Chapter 6, Monitoring and Troubleshooting Azure Serverless Services, teaches you how to
continuously monitor applications, analyze the performance, and review the logs to
understand whether there are any issues that end users are facing. Azure provides us with
multiple tools to achieve all the monitoring requirements, right from the development stage
and the maintenance stage of the application.

Chapter 7, Code Reusability and Refactoring the Code in Azure Functions, helps you in
understanding how to refactor your code and make use of classes for reusability in
serverless architectures. You will also learn how to migrate legacy C# classes to Azure
serverless functions.

Chapter 8, Developing Reliable and Durable Serverless Applications Using Durable Functions,
shows you how to develop long-running, stateful solutions in serverless environments
using Durable Functions, which has advanced features that have been released as an
extension to Azure Functions.

Chapter 9, Implement Best Practices for Azure Functions, teaches a few of the best practices
that one should follow to improve performance and security while working in Azure
Functions.

Chapter 10, Implement Continuous Integration and Deployment of Azure Functions Using Visual
Studio Team Services, helps you learn how to implement continuous integration and delivery
of your Azure Functions code with the help of Visual Studio and VSTS.

What you need for this book
Prior knowledge and hands-on experience with core services of Microsoft Azure is
required.

Preface

[3]

Who this book is for
If you are a cloud administrator, architect, or developer who wants to build scalable
systems and deploy serverless applications with Azure Functions, then this book is for you.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to
do it…, How it works…, There's more…, and See also). To give clear instructions on how to
complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Preface

[4]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "For this
example, I have used RegisterUser as the name of the Azure Function."

A block of code is set as follows:

 public UserProfile(string lastName, string firstName)
 {
 this.PartitionKey = "p1";
 this.RowKey = Guid.NewGuid().ToString();;
 }

Any command-line input or output is written as follows:

Install-Package Microsoft.Azure.WebJobs.Extensions -Version 2.0.0

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In the SendGrid Email
Delivery blade, click on the Create button to navigate to Create a New SendGrid Account."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-mail
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support, and register to have the files e-mailed directly to you. You can
download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.
Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Azure-Serverless-Computing-Cookbook. We also
have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Azure-Serverless-Computing-Cookbook
https://github.com/PacktPublishing/

Preface

[6]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file
from https://www.packtpub.com/sites/default/files/downloads/AzureServerlessComp
utingCookbook_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support, and enter the name of the book in the
search field. The required information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/sites/default/files/downloads/AzureServerlessComputingCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/AzureServerlessComputingCookbook_ColorImages.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

1
Accelerate Your Cloud

Application Development Using
Azure Function Triggers and

Bindings
In this chapter, we will cover the following recipes:

Building a backend Web API using HTTP triggers
Persisting employee details using Azure Storage table output bindings
Saving the profile images to Queues using Queue output bindings
Storing the image in Azure Blob storage
Cropping an image using ImageResizer trigger

Introduction
Every software application needs backend components that are responsible for taking care
of the business logic and storing the data into some kind of storage such as database,
filesystem, and so on. Each of these backend components could be developed using
different technologies. Azure serverless technology also allows us to develop these backend
APIs using Azure Functions.

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[8]

Azure Functions provide many out-of-the-box templates that solves most of the common
problems such as connecting to storage, building Web APIs, cropping the images, and so
on. In this chapter, we will learn how to use these built-in templates. Along with learning
the concepts related to Azure serverless computing, we will also try to implement a solution
to a basic domain problem of creating components required for any organization to manage
the internal employee information.

Following is a simple diagram that helps you understand what we will be going to achieve
in this chapter:

Building a backend Web API using HTTP
triggers
We will use Azure serverless architecture for building a Web API using HTTP triggers.
These HTTP triggers could be consumed by any frontend application that is capable of
making HTTP calls.

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[9]

Getting ready
Let's start our journey of understanding Azure serverless computing using Azure Functions
by creating a basic backend Web API that responds to HTTP requests:

Please refer to the URL https:/ /azure. microsoft. com/ en- in/free/ ?wt. mc_ id=
AID607363_ SEM_ 8y6Q27AS for creating a free Azure Account.
Also, visit https:/ /docs. microsoft. com/ en-us/ azure/ azure- functions/
functions- create- function- app-portal to understand the step by step process
of creating a function app and https:/ /docs. microsoft. com/ en- us/azure/
azure-functions/ functions- create- first- azure- function to create a
function. While creating a function, a Storage Account is also created for storing
all the files. Please remember the name of the Storage Account which will be used
later in the other chapters.

We will be using C# as the programming language throughout the book.

How to do it…
Navigate to the Function App listing page. Choose the function app in which you1.
would like to add a new function.
Create a new function by clicking on the + icon as shown in the following2.
screenshot:

https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://azure.microsoft.com/en-in/free/?&wt.mc_id=AID607363_SEM_8y6Q27AS
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[10]

If you have created a brand new function, then clicking on the + icon in the3.
preceding step, you would see the Get started quickly with a premade function
page. Please click on the create your own custom functions link to navigate to
the page where you can see all the built-in templates for creating your Azure
Functions.
In the Choose a template below or go to the quickstart section, choose4.
HTTPTrigger-CSharp as shown in the following screenshot to create a new
HTTP trigger function:

Provide a meaningful name. For this example, I have used RegisterUser as the5.
name of the Azure Function.
In the Authorization level drop-down, choose the Anonymous option as shown6.
in the following screenshot. We will learn more about the all the authorization
levels in Chapter 9, Implement Best Practices for Azure Functions:

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[11]

Once you provide the name and choose the Authorization level, click on Create7.
button to create the HTTP trigger function.
As soon as you create the function, all the required code and configuration files8.
will be created automatically and the run.csx file will be opened for you to edit
the code. Remove the default code and replace it with the following code:

 using System.Net;
 public static async Task<HttpResponseMessage>
 Run(HttpRequestMessage req, TraceWriter log)
 {
 string firstname=null,lastname = null;
 dynamic data = await req.Content.ReadAsAsync<object>();
 firstname = firstname ?? data?.firstname;
 lastname = data?.lastname;
 return (lastname + firstname) == null ?
 req.CreateResponse(HttpStatusCode.BadRequest,
 "Please pass a name on the query string or in the
 request body") :
 req.CreateResponse(HttpStatusCode.OK, "Hello " +
 firstname + " " + lastname);
 }

Save the changes by clicking on the Save button available just above the code9.
editor.
Let's try to test the RegisterUser function using the Test console. Click on the10.
tab named Test as shown in the following screenshot to open the Test console:

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[12]

Enter the values for firstname and lastname, in the Request body section as11.
shown in the following screenshot:

Please make sure you select POST in the HTTP method drop-down.

Once you have reviewed the input parameters, click on the Run button available12.
at the bottom of the Test console as shown in the following screenshot:

If the input request workload is passed correctly with all the required parameters,13.
you will see a Status 200 OK, and the output in the Output window will be as
shown in the preceding screenshot.

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[13]

How it works…
We have created the first basic Azure Function using HTTP triggers and made a few
modifications to the default code. The code just accepts firstname and lastname
parameters and prints the name of the end user with a Hello {firstname} {lastname}
message as a response. We have also learnt how to test the HTTP trigger function right from
the Azure Management portal.

For the sake of simplicity, I didn't perform validations of the input
parameter. Please make sure that you validate all the input parameters in
your applications running on your production environment.

See also
The Enabling authorization for function apps recipe in Chapter 9, Implement Best
Practices for Azure Functions

Persisting employee details using Azure
Storage table output bindings
In the previous recipe, you have learnt how to create an HTTP trigger and accept the input
parameters. Let's now work on something interesting, that is, where you store the input
data into a persistent medium. Azure Functions supports us to store data in many ways. For
this example, we will store the data in Azure Table storage.

Getting ready
In this recipe, you will learn how easy it is to integrate an HTTP trigger and the Azure
Table storage service using output bindings. The Azure HTTP trigger function receives the
data from multiple sources and stores the user profile data in a storage table named
tblUserProfile.

For this recipe, we will use the same HTTP trigger that we have created in our
previous recipe.

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[14]

We will be using Azure Storage Explorer which is a tool that helps us to work
with the data stored in Azure Storage account. You can download it from http:/
/storageexplorer. com/ .
You can learn more about Connect to the Storage Account using Azure Storage
Explorer at https:/ /docs. microsoft. com/ en-us/ azure/ vs- azure- tools-
storage- manage- with- storage- explorer

How to do it...
Navigate to the Integrate tab of the RegisterUser HTTP trigger function.1.
Click on the New Output button and select Azure Table Storage then click on2.
the Select button:

http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-manage-with-storage-explorer

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[15]

Once you click on the Select button in the previous step, you will be prompted to3.
choose the following settings of the Azure Table storage output bindings:

Table parameter name: This is the name of the parameter that you will
be using in the Run method of the Azure Function. For this example,
please provide objUserProfileTable as the value.
Table name: A new table in the Azure Table storage will be created to
persist the data. If the table doesn't exist already, Azure will
automatically create one for you! For this example, please provide
tblUserProfile as the table name.
Storage account connection: If you don't see the Storage account
connection string, click on the new (shown in the following
screenshot) to create a new one or to choose an existing storage
account.
The Azure Table storage output bindings should be as shown in the
following screenshot:

Click on Save to save the changes.4.

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[16]

Navigate to the code editor by clicking on the function name and paste the5.
following code:

 #r "Microsoft.WindowsAzure.Storage"
 using System.Net;
 using Microsoft.WindowsAzure.Storage.Table;

 public static async Task<HttpResponseMessage>
 Run(HttpRequestMessage req,TraceWriter
 log,CloudTable objUserProfileTable)
 {
 dynamic data = await
 req.Content.ReadAsAsync<object>();
 string firstname= data.firstname;
 string lastname=data.lastname;

 UserProfile objUserProfile = new UserProfile(firstname,
 lastname);
 TableOperation objTblOperationInsert =
 TableOperation.Insert(objUserProfile);
 objUserProfileTable.Execute(objTblOperationInsert);
 return req.CreateResponse(HttpStatusCode.OK,
 "Thank you for Registering..");
 }

 public class UserProfile : TableEntity
 {
 public UserProfile(string firstName,string lastName)
 {
 this.PartitionKey = "p1";
 this.RowKey = Guid.NewGuid().ToString();;
 this.FirstName = firstName;
 this.LastName = lastName;
 }
 public UserProfile() { }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 }

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[17]

Let's execute the function by clicking on the Run button of the Test tab by6.
passing firstname and lastname parameters in the Request body as shown in
the following screenshot:

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[18]

If everything went well, you should get a Status 200 OK message in the Output7.
box as shown in the preceding screenshot. Let's navigate to Azure Storage
Explorer and view the table storage to see if the table named tblUserProfile
was created successfully:

How it works...
Azure Functions allows us to easily integrate with other Azure services just by adding an
output binding to the trigger. For this example, we have integrated the HTTP trigger with
the Azure Storage table binding and also configured the Azure Storage account by
providing the storage connection string and the Azure Storage table name in which we
would like to create a record for each of the HTTP requests received by the HTTP trigger.

We have also added an additional parameter for handling the table storage named
objUserProfileTable, of type CloudTable, to the Run method. We can perform all the
operations on the Azure Table storage using objUserProfileTable.

For the sake of explanation the input parameters are not validated in the
code sample. However, in your production environment, it's important
that you should validate them before storing in in any kind of persist
medium.

We have also created an object of UserProfile, and filled it with the values received in the
request object, and then passed it to a table operation. You can learn more about handling
operations on Azure Table storage service from the URL https:/ /docs. microsoft. com/ en-
us/azure/storage/ storage- dotnet- how- to-use- tables.

https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[19]

Understanding more about Storage Connection
When you create a new storage connection (please refer to the third step of the How to do it...
section of this recipe) a new App settings will be created as shown in the following
screenshot:

You can navigate to the App settings by clicking on Application settings of the Platform
features tab as shown in the following screenshot:

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[20]

What is Azure Table storage service?
Azure Table storage service is a NoSQL key-value persistent medium for storing semi-
structured data. You can learn more about the same at https:/ /azure. microsoft. com/en-
in/services/storage/ tables/ .

Partition key and row key
The primary key of Azure Table storage tables has two parts as follows:

Partition key: Azure Table storage records are classified and organized into
partitions. Each record located in a partition will have the same partition key (p1
in our example).
Row key: A unique value should be assigned for each of the rows.

A clustered index will be created with the values of the partition key and
row key to improve the query performance.

There's more...
Following is the very first line of the code in this recipe:

#r "Microsoft.WindowsAzure.Storage"

The preceding line of code instructs the function runtime to include a reference to the
specified library to the current context.

Saving the profile images to Queues using
Queue output bindings
In the previous recipe, you have learnt how to receive two string parameters firstname
and lastname in the Request body, and store them in the Azure Table storage. In this
recipe, you will learn how to receive a URL of an image and save the same in the Blob
container of an Azure Storage account.

https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/
https://azure.microsoft.com/en-in/services/storage/tables/

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[21]

We could have processed the downloaded user profile image in the recipe Persisting
employee details using Azure Storage table output bindings. However, keeping in mind the size
of the profile pictures, the processing of images on the fly in the HTTP requests might
hinder the performance of the function. For that reason, we will just grab the URL of the
profile picture and store it in Queue, and later we can process the image and store it in the
Blob.

Getting ready
We will be updating the code of the RegisterUser function that we have used in the
previous recipes.

How to do it…
Navigate to the Integrate tab of the RegisterUser HTTP trigger function.1.
Click on the New Output button and select Azure Queue Storage then click on2.
the Select button.
Provide the following parameters in the Azure Queue Storage output settings:3.

Queue name: Set the value of the Queue name as
userprofileimagesqueue

Storage account connection: Please make sure that you select the right
storage account in the Storage account connection field
Message parameter name: Set the name of the parameter to
objUserProfileQueueItem which will be used in the Run method

Click on Save to the create the new output binding.4.

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[22]

In this recipe, we will look at another approach of grabbing the request5.
parameters for which we will use the Newtonsoft.JSON library to parse the
JSON data. Let's navigate to the View files tab as shown in the following
screenshot:

As shown in the preceding screenshot, click on Add to add a new file. Please6.
make sure that you name it as project.json as shown in the preceding
screenshot.
Once the file is created, add the following code to the project.json file. The7.
following code adds the reference of the Newtonsoft.Json library.

 {
 "frameworks" : {
 "net46": {
 "dependencies":{
 "Newtonsoft.Json" : "10.0.2"
 }
 }
 }
 }

Navigate back to the code editor by clicking on the function name8.
(RegisterUser in this example) and paste the following code:

 #r "Microsoft.WindowsAzure.Storage"
 using System.Net;
 using Microsoft.WindowsAzure.Storage.Table;
 using Newtonsoft.Json;

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[23]

 public static void Run(HttpRequestMessage req,
 TraceWriter log,
 CloudTable
 objUserProfileTable,
 out string
 objUserProfileQueueItem
)
 {
 var inputs = req.Content.ReadAsStringAsync().Result;
 dynamic inputJson = JsonConvert.DeserializeObject<dynamic>
 (inputs);
 string firstname= inputJson.firstname;
 string lastname=inputJson.lastname;
 string profilePicUrl = inputJson.ProfilePicUrl;

 objUserProfileQueueItem = profilePicUrl;
 UserProfile objUserProfile = new UserProfile(firstname,
 lastname, profilePicUrl);
 TableOperation objTblOperationInsert =
 TableOperation.Insert(objUserProfile);
 objUserProfileTable.Execute(objTblOperationInsert);
 }

 public class UserProfile : TableEntity
 {
 public UserProfile(string firstname, string lastname,
 string profilePicUrl)
 {
 this.PartitionKey = "p1";
 this.RowKey = Guid.NewGuid().ToString();
 this.FirstName = firstname;
 this.LastName = lastname;
 this.ProfilePicUrl = profilePicUrl;
 }
 public UserProfile() { }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string ProfilePicUrl {get; set;}
 }

Click on Save to save the code changes in the code editor of the run.csx file.9.

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[24]

Let's test the code by adding another parameter ProfilePicUrl to the Request10.
body shown as follows then click on the Run button in the Test tab of the Azure
Function code editor window: The image used in the below JSON might not exist
when you are reading this book. So, Please make sure that you provide a valid
URL of the image.

 {
 "firstname": "Bill",
 "lastname": "Gates",
 "ProfilePicUrl":"https://upload.wikimedia.org/wikipedia/
 commons/1/19/Bill_Gates_June_2015.jpg"
 }

If everything goes fine you will see the Status : 200 OK message, then the image11.
URL that you have passed as an input parameter in the Request body will be
created as a Queue message in the Azure Storage Queue service. Let's navigate to
Azure Storage Explorer, and view the Queue named
userprofileimagesqueue, which is the Queue name that we have provided in
the Step 3. Following is the screenshot of the Queue message that was created:

How it works…
In this recipe, we have added Queue message output binding and made the following
changes to the code:

Added a reference to the Newtonsoft.Json NuGet library in the project.json
file
Added a new parameter named out string objUserProfileQueueItem
which is used to bind the URL of the profile picture as a Queue message content

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[25]

We have also made the Run method synchronous by removing async as it doesn't
allow us to have out parameters

There's more…
The project.json file contains all the references of the external libraries that we may use
in the Azure Function.

At the time of writing, Azure Function Runtime only supports .NET
Framework 4.6.

See also
The Persisting employee details using Azure Storage table Output Bindings recipe

Storing the image in Azure Blob storage
Let's learn how to invoke an Azure Function when a new queue item is added to the Azure
Storage Queue service. Each message in the Queue is the URL of the profile picture of a user
which will be processed by the Azure Functions and will be stored as a Blob in the Azure
Storage Blob service.

Getting ready
In the previous recipe, we have learnt how to create Queue output bindings. In this recipe,
you will grab the URL from the Queue, create a byte array, and then write it to a Blob.

This recipe is a continuation of the previous recipes. Please make sure that you implement
them.

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[26]

How to do it...
Create a new Azure Function by choosing the QueueTrigger-C# from the1.
templates.
Provide the following details after choosing the template:2.

Name your function: Please provide a meaningful name such
as CreateProfilePictures.
Queue name: Name of the Queue which should be monitored by the
Azure Function. Our previous recipe created a new item for each of the
valid requests coming to the HTTP trigger (named RegisterUser)
into the userprofileimagesqueue Queue. For each new entry of a
queue message to this Queue storage, the CreateProfilePictures
trigger will be executed automatically.
Storage account connection: Connection of the storage account where
the Queues are located.

Review all the details, and click on Create to create the new function.3.
Navigate to Integrate tab then click on New Output then choose Azure Blob4.
Storage then click on the Select button.
In the Azure Blob Storage output section, provide the following:5.

Blob parameter name: Set it to outputBlob
Path: Set it to userprofileimagecontainer/{rand-guid}
Storage account connection: Choose the storage account where you
would like to save the Blobs:

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[27]

Once you provide all the preceding details, click on the Save button to save all6.
the changes.
Replace the default code of the run.csx file with the following code:7.

 using System;
 public static void Run(Stream outputBlob,string myQueueItem,
 TraceWriter log)
 {
 byte[] imageData = null;
 using (var wc = new System.Net.WebClient())
 {
 imageData = wc.DownloadData(myQueueItem);
 }
 outputBlob.WriteAsync(imageData,0,imageData.Length);
 }

Click on the Save button to save the changes.8.
Let's go back to the RegisterUser function and test it by providing firstname,9.
lastname, and ProfilePicUrl fields as we did in the Saving the profile images to
Queues using Queue output bindings recipe.
Now, navigate to the Azure Storage Explorer, and look at the Blob container10.
userprofileimagecontainer. You will find a new Blob as shown in the
following screenshot:

You can view the image in any tool (such as MS Paint or Internet Explorer).11.

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[28]

How it works...
We have created a Queue trigger that gets executed as and when a new message arrives in
the Queue. Once it finds a new Queue message, then it reads the message, and as we know
the message is a URL of a profile picture. The function makes a web client request and
downloads the image data in the form of byte array, and then writes the data into the Blob
which is configured as an output Blob

There's more...
The parameter rand-guid, will generate a new GUID and is assigned to the Blob that gets
created each time the trigger is fired.

It is mandatory to specify the Blob container name in the Path parameter
of the Blob storage output binding while configuring the Blob storage
output. Azure Functions creates one automatically if it doesn't exist.

You can use Queue messages only when you would like to store messages
which are up to 64 KB. If you would like to store the messages greater
than 64 KB, you need to use the Azure Service Bus.

See also...
The Building a backend Web API using HTTP triggers recipe
The Persisting employee details using Azure Storage table output bindings recipe
The Saving the profile images to Queues using Queue output bindings recipe
The Storing the image in Azure Blob storage recipe

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[29]

Cropping an image using ImageResizer
trigger
In the recent times, with the evolution of smart phones with high-end cameras, it's easy to
capture a high-quality picture of huge sizes. It's good to have good quality pictures to
refresh our memories. However, as an application developer or administrator, it would be a
pain to manage the storage when your website is popular and you expect most of the users
to get registered with a high-quality profile picture. So, it makes sense to use some libraries
that could reduce the size of the high-quality images and crop them without losing the
aspect ratio so that the quality of the image doesn't get reduced.

In this recipe, we will learn how to implement the functionality of cropping the image and
reducing the size without losing the quality using one of the built-in Azure Function
templates named ImageResizer .

Getting ready
In this recipe, you will learn how to use a library named ImageResizer. We will be using
the library for resizing the image with the required dimensions. For the sake of simplicity,
we will crop the image to the following sizes:

Medium with 200*200 pixels
Small with 100*100 pixels

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[30]

How to do it...
Create a new Azure Function by choosing the Samples in the Scenario drop-1.
down as shown in the following screenshot:

Select the ImageResizer-CSharp template as shown in the preceding screenshot.2.
Once you have selected the template, the portal prompts you to choose the3.
following parameters:

Name your Function: Provide a meaningful name. For this example, I
have provided CropProfilePictures.
Azure Blob Storage trigger (image):

Path: Provide the path of the container (in our case
userprofileimagecontainer) which contains all the
blobs that are created by the Queue trigger.
CreateProfilePictures in the previous recipe
Storage account connection: Select the connection string
of the storage account where the container and Blobs are
stored

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[31]

Azure Blob Storage output (imageMedium):
Path: Please provide the name of the container where the
resized images of size medium 200*200 are to be stored.
In this case, userprofileimagecontainer-md.
Storage account connection: Select the connection string
of the storage account where the Blobs are stored.

Azure Blob Storage output (imageSmall):
Path: Please provide the name of the container where the
resized images of size small 100*100 are to be stored. In
this case, userprofileimagecontainer-sm.
Storage account connection: Select the connection string
of the storage account where the Blobs are stored.

Review all the details and click on Create as shown in the following screenshot:4.

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[32]

Fortunately, the ImageResizer Azure Function template provides most of the5.
necessary code for our requirement of resizing the image. I just made a few minor
tweaks. Replace the default code with the following code and the code should be
self-explanatory:

 using ImageResizer;

 public static void Run(
 Stream image, Stream imageSmall, Stream imageMedium)
 {
 var imageBuilder = ImageResizer.ImageBuilder.Current;
 var size = imageDimensionsTable[ImageSize.Small];
 imageBuilder.Build(image, imageSmall, new ResizeSettings
 (size.Item1, size.Item2, FitMode.Max, null), false);
 image.Position = 0;
 size = imageDimensionsTable[ImageSize.Medium];
 imageBuilder.Build(image, imageMedium, new ResizeSettings
 (size.Item1, size.Item2, FitMode.Max, null), false);
 }

 public enum ImageSize
 {
 Small, Medium
 }

 private static Dictionary<ImageSize, Tuple<int, int>>
 imageDimensionsTable = new Dictionary<ImageSize, Tuple<int,
 int>>()
 {
 { ImageSize.Small, Tuple.Create(100, 100) },
 { ImageSize.Medium, Tuple.Create(200, 200) }
 };

Let's run a test on the RegisterUser function by submitting a sample request6.
with firstname, lastname, and a ProfilePicUrl. I have used the same inputs
that we have used in our previous recipes.

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[33]

In the Azure Storage Explorer, I can see two new Blob containers7.
userprofileimagecontainer-md and userprofileimagecontainer-sm as
shown in the following screenshot:

I can even view the corresponding cropped versions in each of those containers.8.
Following are the three versions of the image that we have used as input:

How it works...
We have created a new function using one of the samples named ImageResizer that the
Azure Function template provides.

Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings Chapter 1

[34]

The ImageResizer template takes input from userprofileimagecontainer Blob
container where the original Blobs reside. Whenever a new Blob is created in the
userprofileimagecontainer Blob, the function will create two resized versions in each
of the userprofileimagecontainer-md and userprofileimagecontainer-sm
containers automatically.

Following is a simple diagram that shows how the execution of the functions is triggered
like a chain:

See also
The Building a backend Web API using HTTP triggers recipe
The Persisting employee details using Azure Storage table output bindings recipe
The Saving profile picture path to Azure Storage Queues using Queue output bindings
recipe
The Storing the image in Azure Blob storage recipe.

2
Working with Notifications

Using SendGrid and Twilio
Services

In this chapter, we will look at the following:

Sending an email notification to the administrator of the website using the
SendGrid service
Sending an email notification to the end user dynamically
Implementing email logging in the Blob storage
Modifying the email content to include an attachment
Sending SMS notification to the end user using the Twilio service

Introduction
For every business application to run it's business operations smoothly, one of the key
features is to have a reliable communication system between the business and the
customers. The communication channel might be two-way, either sending a message to the
administrators managing the application or sending alerts to the customers via emails or
SMS to their mobile phones.

Azure has integrations with two popular communication services named SendGrid for
emails and Twilio for working with SMS. In this chapter, we will be using both the
communication services to understand how to leverage their basic services to send
messages between the business administrators and the end users.

Working with Notifications Using SendGrid and Twilio Services Chapter 2

[36]

Sending an email notification to the
administrator of the website using the
SendGrid service
In this recipe, you will learn how to create a SendGrid output binding and send an email
notification to the administrator with static content. In general, there would be only
administrators, so we will be hardcoding the email address of the administrator in the To
address field of the SendGrid output (message) binding.

Getting ready
We will perform the following steps before moving to the next section:

Create a SendGrid account API key from the Azure Management portal.1.
Generate an API key from the SendGrid portal.2.

Creating a SendGrid account
Navigate to Azure Management portal and create a SendGrid Email Delivery1.
account by searching for it in the Marketplace, as shown in the following
screenshot:

Working with Notifications Using SendGrid and Twilio Services Chapter 2

[37]

In the SendGrid Email Delivery blade, click on the Create button to navigate to2.
Create a New SendGrid Account. Select free in Pricing tier and provide all the
other details and click on the Create button, as shown in the following
screenshot:

Working with Notifications Using SendGrid and Twilio Services Chapter 2

[38]

Once the account is created successfully, navigate to SendGrid Accounts. You3.
can use the search box available on the top, as shown in the following screenshot:

Navigate to Settings, choose Configurations , and grab Username and4.
SmtpServer from the Configurations blade, as shown in the following
screenshot:

Working with Notifications Using SendGrid and Twilio Services Chapter 2

[39]

Generating the SendGrid API key
In order to utilize the SendGrid account by the Azure Functions runtime, we1.
need to provide the SendGrid API key as input to the Azure Functions. You can
generate an API key from the SendGrid portal. Let's navigate to the SendGrid
portal by clicking on the Manage button in the Essentials blade of SendGrid
Account, as shown in the following screenshot:

In the SendGrid portal, click on API Keys under the Settings section of the left-2.
hand side menu, as shown in the following screenshot:

In the API Keys page, click on Create API Key, as shown in the following3.
screenshot:

Working with Notifications Using SendGrid and Twilio Services Chapter 2

[40]

In the Create API Key popup, provide a name and choose API Key Permissions4.
and click on the Create & View button.
After a moment, you will be able to see the API key. Click on the key to copy it to5.
the clipboard, as shown in the following screenshot:

Configuring the SendGrid API key with the Azure
Function app

Create a new App settings in the Azure Function app by navigating to the1.
Application settings blade under the Platform features section, of the function
app, as shown in the following screenshot:

Click on the Save button after adding the App settings in the preceding step.2.

Working with Notifications Using SendGrid and Twilio Services Chapter 2

[41]

How to do it...
Navigate to the Integrate tab of the RegisterUser function and click on the1.
New Output button to add a new output binding.
Choose the SendGrid binding and click on the Select button to add the binding.2.
Provide the following parameters in the SendGrid output (message) binding:3.

Message parameter name: Leave the default value, which is message.
We will be using this parameter in the Run method in a moment.
SendGrid API Key: Provide the App settings key that you have
created in Application settings.
To address: Provide the email address of the administrator.
From address: Provide the email address from where you would like
to send the email. In general, it would be something like
donotreply@example.com.
Message subject: Provide the subject that you would like to have in the
email subject.
Message Text: Provide the email body text that you would like to have
in the email body.

This is how the SendGrid output (message) binding should look like after4.
providing all the fields:

Working with Notifications Using SendGrid and Twilio Services Chapter 2

[42]

Once you review the values, click on Save to save the changes.5.
Navigate to the Run method and make the following changes:6.

Add a new reference for SendGrid and also the namespace
SendGrid.Helpers.Mail.
Add a new out parameter message of type Mail.
Create an object of type Mail. We will understand how to use this
object in the next recipe.

The following is the complete code of the Run method:7.

 #r "Microsoft.WindowsAzure.Storage"
 #r "SendGrid"

 using System.Net;
 using SendGrid.Helpers.Mail;
 using Microsoft.WindowsAzure.Storage.Table;
 using Newtonsoft.Json;
 public static void Run(HttpRequestMessage req,
 TraceWriter log,
 CloudTable
 objUserProfileTable,
 out string
 objUserProfileQueueItem,
 out Mail message
)
 {
 var inputs =
 req.Content.ReadAsStringAsync().Result;
 dynamic inputJson =
 JsonConvert.DeserializeObject<dynamic>
 (inputs);
 string firstname= inputJson.firstname;
 string lastname=inputJson.lastname;
 string profilePicUrl =
 inputJson.ProfilePicUrl;

 objUserProfileQueueItem = profilePicUrl;

 UserProfile objUserProfile = new
 UserProfile(firstname, lastname,profilePicUrl);
 TableOperation objTblOperationInsert =
 TableOperation.Insert(objUserProfile);
 objUserProfileTable.Execute
 (objTblOperationInsert);
 message = new Mail();
 }

Working with Notifications Using SendGrid and Twilio Services Chapter 2

[43]

 public class UserProfile : TableEntity
 {
 public UserProfile(string firstname, string lastname,string
profilePicUrl)
 {
 this.PartitionKey = "p1";
 this.RowKey = Guid.NewGuid().ToString();;
 this.FirstName = firstname;
 this.LastName = lastname;
 this.ProfilePicUrl = profilePicUrl;
 }
 public UserProfile() { }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string ProfilePicUrl {get; set;}
 }

Now, let's test the functionality of sending the email by navigating to the8.
RegisterUser function and submitting a request with the some test values, as
follows:

 {
 "firstname": "Bill",
 "lastname": "Gates",
 "ProfilePicUrl":"https:/ / upload. wikimedia. org/
 wikipedia/commons/thumb/1/19/
 Bill_Gates_June_2015.jpg/220px-
 Bill_Gates_June_2015.jpg"
 }

How it works...
The aim of this recipe is to send a notification via email to an administrator, updating that a
new registration got created successfully.

We have used the one of the Azure Function experimental templates named SendGrid as a
Simple Mail Transfer Protocol (SMTP) server to send the emails by hardcoding the
following properties in the SendGrid output (message) bindings:

From the email address
To the email address
Subject of the email
Body of the email

http://cdn2.itpro.co.uk/sites/itpro/files/images/dir_138/it_photo_69006.jpg
http://cdn2.itpro.co.uk/sites/itpro/files/images/dir_138/it_photo_69006.jpg
http://cdn2.itpro.co.uk/sites/itpro/files/images/dir_138/it_photo_69006.jpg
http://cdn2.itpro.co.uk/sites/itpro/files/images/dir_138/it_photo_69006.jpg
http://cdn2.itpro.co.uk/sites/itpro/files/images/dir_138/it_photo_69006.jpg
http://cdn2.itpro.co.uk/sites/itpro/files/images/dir_138/it_photo_69006.jpg
http://cdn2.itpro.co.uk/sites/itpro/files/images/dir_138/it_photo_69006.jpg
http://cdn2.itpro.co.uk/sites/itpro/files/images/dir_138/it_photo_69006.jpg
http://cdn2.itpro.co.uk/sites/itpro/files/images/dir_138/it_photo_69006.jpg
http://cdn2.itpro.co.uk/sites/itpro/files/images/dir_138/it_photo_69006.jpg
http://cdn2.itpro.co.uk/sites/itpro/files/images/dir_138/it_photo_69006.jpg
http://cdn2.itpro.co.uk/sites/itpro/files/images/dir_138/it_photo_69006.jpg
http://cdn2.itpro.co.uk/sites/itpro/files/images/dir_138/it_photo_69006.jpg

Working with Notifications Using SendGrid and Twilio Services Chapter 2

[44]

SendGrid output (message) bindings will use the API key provided in App settings to
invoke the required APIs of the SendGrid library to send the emails.

See also
The Sending an email notification to the end user dynamically recipe in this chapter

Sending an email notification to the end user
dynamically
In the previous recipe, we hard coded most of the attributes related to sending an email to
an administrator as there would be just one administrator. In this recipe, we will modify the
previous recipe that sends emails to the user itself that sends a Thank you for
registration email.

Getting ready
Make sure that the following are configured properly:

The SendGrid account has been created and an API key is generated in the
SendGrid portal
An App settings is created in the Application settings of the function app
The App settings key is configured in the SendGrid output (message) bindings

How to do it...
Navigate to the RegisterUser function and make the following changes in the1.
run.csx file.
Add a new string variable that accepts new input parameter named email from2.
the request object:

 string firstname= inputJson.firstname;
 string lastname=inputJson.lastname;
 string profilePicUrl = inputJson.ProfilePicUrl;

Working with Notifications Using SendGrid and Twilio Services Chapter 2

[45]

 string email = inputJson.email;

 UserProfile objUserProfile = new
 UserProfile(firstname,lastname,profilePicUrl,email);

Add the following code immediately after instantiating the message object:3.

 message = new Mail();
 message.Subject = "New User got registered
 successfully.";
 message.From = new Email("donotreply@example.com");
 message.AddContent(new Content("text/html","Thank you so much
 for getting registered to our site."));

 Personalization personalization = new Personalization();
 personalization.AddTo(new Email(email));
 message.AddPersonalization(personalization);

 public class UserProfile : TableEntity
 {
 public UserProfile(string firstname,string lastname, string
 profilePicUrl,string email)
 {

 this.ProfilePicUrl = profilePicUrl;
 this.Email = email;
 }

 public string ProfilePicUrl {get; set;}
 public string Email { get; set; }
 }

Instead of hardcoding, we are passing the values of the Subject, body
(content), and From address dynamically via code. It's also possible to
change the values and personalize based on the needs. Note that the email
will be sent to the end user who got registered by providing an email
address.

Working with Notifications Using SendGrid and Twilio Services Chapter 2

[46]

Let's run a test by adding a new input field email to the test request payload,4.
shown as follows:

 {
 "firstname": "Praveen",
 "lastname": "Sreeram",
 "email":"example@gmail.com",
 "ProfilePicUrl":"A Valid url here"
 }

This is the screenshot of the email that I have received:5.

How it works...
We have updated the code of the RegisterUser function to accept another new parameter
named email.

The function accepts the email parameter and sends the email to the end user using the
SendGrid API. We have also configured all the other parameters, such as the From address,
Subject, and body (content) in the code so that it is customized dynamically based on the
requirements. We can also clear the fields in the SendGrid output (message) bindings, as
shown in the following screenshot:

Working with Notifications Using SendGrid and Twilio Services Chapter 2

[47]

The values specified in the code will take precedence over the values
specified in the preceding step.

There's more...
You can also send HTML content in the body to make your email more attractive. The
following is a simple example, where I just applied bold () tag to the name of the end
user:

message.From = new Email("donotreply@example.com");
message.AddContent(new Content("text/html","Thank you " + firstname + "
" + lastname +" so much for getting registered to our site."));

Personalization personalization = new Personalization();

Working with Notifications Using SendGrid and Twilio Services Chapter 2

[48]

The following is the screenshot of the email with my name in bold:

See also
The Sending an email notification to the administrator of the website using the
SendGrid service recipe in Chapter 2, Working with Notifications Using SendGrid and
Twilio Services

Implementing email logging in the Blob
storage
In most of the applications, you would have requirements of sending emails in the form of
notifications, alerts, and so on to the end user. At times, users might complain that they
haven't received any email even though we don't see any error in the application while
sending such notification alerts.

There might be multiple reasons why users might not have received the email. Each of the
email service providers has different spam filters that might block the emails in sending
them to the end user's inbox. These emails might have some important information that the
users might need. It makes sense to store the email content of all the emails that are sent to
the end users, which could be used for retrieving the data at a later stage or for
troubleshooting any unforeseen issues.

You will learn how to create a new email log file with the .log extension for each new
registration. This log file could be used as a redundancy to the data stored in the Table
storage.

In this recipe, you will learn how to store the email log files as a Blob in a storage container
with the data inputted by the end user while getting registered.

Working with Notifications Using SendGrid and Twilio Services Chapter 2

[49]

How to do it...
Navigate to the Integrate tab of the RegisterUser function, click on New1.
Output , and choose Azure Blob Storage.
Provide the required parameters in the Azure Blob Storage output (outputBlob)2.
section, as shown in the following screenshot. Note the .log extension in the
Path field:

Navigate to the code editor of the run.csx file and make the following change:3.
Add a new parameter outputBlob of type TextWriter to the Run1.
method.
Add a new string variable named emailContent. This variable is used2.
to frame the content of the email. We will also use the same variable to
create the log file content that is finally stored in the blob.
Frame the email content by appending the required static text and the3.
input parameters received in Request body:

 public static void Run(HttpRequestMessage req,
 TraceWriter log,
 CloudTable objUserProfileTable,
 out string objUserProfileQueueItem,
 out Mail message,
 TextWriter outputBlob
)

 string email = inputJson.email;
 string profilePicUrl = inputJson.ProfilePicUrl;
 string emailContent;

Working with Notifications Using SendGrid and Twilio Services Chapter 2

[50]

 emailContent = "Thank you " + firstname + " " +
 lastname +" for your registration.

" +
 "Below are the details that you have provided us

"+ "First name: " + firstname + "
" +
 "Last name: " + lastname + "
" +
 "Email Address: " + email + "
" +
 "Profile Url: " + profilePicUrl + "

" + "Best Regards," + "
" + "Website Team";
 message.AddContent(new
 Content("text/html",emailContent));

 outputBlob.WriteLine(emailContent);

Run a test using the same request payload that we have used in the previous4.
recipe.
After running the test, the log file got created in the container named5.
userregistrationemaillog:

How it works...
We have created new Azure Blob output bindings. As soon as a new request is received, the
email content is created and written to a new .log file (you can have any other extension)
that is stored as a Blob in the container specified in the Path field of the output bindings.

Working with Notifications Using SendGrid and Twilio Services Chapter 2

[51]

Modifying the email content to include an
attachment
In this recipe, you will learn how to send a file as an attachment to the registered user. In
our previous recipe, we created a log file of the email content. We will send the same file as
an attachment to the email. However, in real-world applications, you might not intend to
send log files to the end user. For the sake of simplicity, we will send the log file as an
attachment.

At the time of writing this, SendGrid recommends that the size of the
attachment not exceed 10 MB, though technically, you can have the size of
your email as 30 MB.

Getting ready
This is the continuation of the previous recipe. Go through the previous recipes of this
chapter just in case you are reading this first.

How to do it...
Make the changes to the code to create the log file with the RowKey of the table.
We will be achieving this using the IBinder interface.
Send this file as an attachment to the email.

Customizing the log file name using IBinder interface
Navigate to the code editor of the RegisterUser function.1.
Remove the TextWriter object and replace it with the variable binder of type2.
IBinder. This is the new signature of the Run method with the changes
highlighted:

 public static void Run(HttpRequestMessage req,
 TraceWriter log,
 CloudTable objUserProfileTable,
 out string objUserProfileQueueItem,
 out Mail message,

Working with Notifications Using SendGrid and Twilio Services Chapter 2

[52]

 IBinder binder
)

Let's grab the data of the new record that's inserted into the Azure Table storage3.
service. We will be using the GUID (RowKey) of the newly created record in the
Table storage. Make the changes highlighted in the following piece of code:

 TableResult objTableResult =
 objUserProfileTable.Execute(objTblOperationInsert);
 UserProfile objInsertedUser =
 (UserProfile)objTableResult.Result;

As we have removed the TextWriter object, the line of code4.
outputBlob.WriteLine(emailContent); will no longer work. Let's replace it
with the following piece of code:

 using (var emailLogBloboutput = binder.Bind<TextWriter>(new
 BlobAttribute($"userregistrationemaillogs/
 {objInsertedUser.RowKey}.log")))
 {
 emailLogBloboutput.WriteLine(emailContent);
 }

Let's run a test using the same request payload that we have used in the previous5.
recipes.
You will see the email log file that is created using the RowKey of the new record6.
stored in the Azure Table storage, as shown in the following screenshot:

Working with Notifications Using SendGrid and Twilio Services Chapter 2

[53]

Adding an attachment to the email
Add the following code to the Run method of the RegisterUser function:1.

 Attachment objAttachment = new Attachment();
 objAttachment.Content = System.Convert.ToBase64String
 (System.Text.Encoding.UTF8.GetBytes(emailContent));
 objAttachment.Filename = firstname + "_" + lastname + ".log";
 message.AddAttachment(objAttachment);

Let's run a test using the same request payload that we have used in the previous2.
recipes.
This is the screenshot of the email, along with the attachment:3.

There's more...
Actions are not available for all type of output bindings. They're available
only for a few, such as Blob, Queue output bindings, and so on.

Working with Notifications Using SendGrid and Twilio Services Chapter 2

[54]

Sending SMS notification to the end user
using the Twilio service
In most of the previous recipes of this chapter, we have worked with SendGrid triggers to
send the emails in different scenarios. In this recipe, you will learn how to send notifications
via SMS using one of the leading cloud communication platform named Twilio.

You can also learn more about Twilio at https:/ / www.twilio. com/ .

Getting ready
In order to use the Twilio SMS output (objsmsmessage) binding, we need to do the
following:

Create a trail Twilio account from https:/ / www.twilio. com/ try-twilio.1.
After successful creation of the account, grab ACCOUNT SID and AUTH2.
TOKEN from the Twilio Dashboard, as shown in the following screenshot. We
will create two App settings in the Application settings blade of the function
app for both of these settings:

https://www.twilio.com/
https://www.twilio.com/
https://www.twilio.com/
https://www.twilio.com/
https://www.twilio.com/
https://www.twilio.com/
https://www.twilio.com/
https://www.twilio.com/
https://www.twilio.com/
https://www.twilio.com/
https://www.twilio.com/try-twilio
https://www.twilio.com/try-twilio
https://www.twilio.com/try-twilio
https://www.twilio.com/try-twilio
https://www.twilio.com/try-twilio
https://www.twilio.com/try-twilio
https://www.twilio.com/try-twilio
https://www.twilio.com/try-twilio
https://www.twilio.com/try-twilio
https://www.twilio.com/try-twilio
https://www.twilio.com/try-twilio
https://www.twilio.com/try-twilio
https://www.twilio.com/try-twilio

Working with Notifications Using SendGrid and Twilio Services Chapter 2

[55]

In order to start sending messages, you need to create an active number within3.
Twilio, which you can use as the from number that you could use for sending the
SMS. You can create and manage numbers in Phone Numbers Dashboard.
Navigate to https:/ /www. twilio. com/ console/ phone- numbers/ incoming and
click on the Get Started button, as shown in the following screenshot:

On the Get Started with Phone Numbers page, click on Get your first Twilio4.
phone number , as shown in the following screenshot:

Once you get your number, it will be listed as follows:5.

https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming
https://www.twilio.com/console/phone-numbers/incoming

Working with Notifications Using SendGrid and Twilio Services Chapter 2

[56]

The final step is to verify a number to which you would like to send an SMS. You6.
can have only one number in your trail account. You can verify a number on the
https:// www. twilio. com/ console/ phone- numbers/ verified page. The
following is the screenshot of the list of verified numbers:

How to do it...
Navigate to the Application settings blade of the function app and add two keys1.
to store TwilioAccountSID and TwilioAuthToken, as shown here:

Go the Integrate tab of the RegisterUser function and click on New Output2.
and choose Twilio SMS, as shown in the following screenshot:

https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified
https://www.twilio.com/console/phone-numbers/verified

Working with Notifications Using SendGrid and Twilio Services Chapter 2

[57]

Click on Select and provide the following values to the Twilio SMS output3.
(objsmsmessage) bindings. From number is the one that is generated in the
Twilio portal, which we discussed in the Getting Ready section of this recipe:

Navigate to the code editor and add the following lines of code, highlighted in4.
bold. In the preceding code, I have hard coded To number. However, in real-
world scenarios, you would dynamically receive the end user's mobile number
and send the SMS via code:

 ...
 ...
 #r "Twilio.Api"
 ...

Working with Notifications Using SendGrid and Twilio Services Chapter 2

[58]

 ...
 using Twilio;
 public static void Run(HttpRequestMessage req,
 TraceWriter log,
 CloudTable objUserProfileTable,
 out string objUserProfileQueueItem,
 out Mail message,
 IBinder binder,
 out SMSMessage objsmsmessage
)
 message.AddAttachment(objAttachment);
 objsmsmessage= new SMSMessage();
 objsmsmessage.Body = "Hello.. Thank you for getting
 registered.";

I just did a test run of the RegisterUser function using the same request5.
payload.
The following is the screenshot of the SMS that I have received:6.

How it works...
We have created a new Twilio account and copied the account ID and App key into the
App settings of the Azure Function app. These two settings will be used by the function
app runtime to connect to the Twilio API for sending the SMS.

For the sake of simplicity, I have hardcoded the phone number in the output bindings.
However, in real-work applications, you would send the SMS to the phone number
provided by the end users.

3
Seamless Integration of Azure

Functions with Other Azure
Services

In this chapter, we will cover the following recipes:

Using Cognitive Services to locate faces from the images
Azure SQL Database interactions using Azure Functions
Processing a file stored in OneDrive using an external file trigger
Monitoring tweets using Logic Apps and notifying when popular user tweets
Integrating Logic Apps with Serverless functions

Introduction
One of the major goals of Azure Functions is to make the developers focus on just
developing the application requirements and logic and abstract everything else.

As a developer or business user, you cannot afford to invent and develop your own
applications from scratch for each of your business needs. You would first need to research
about the existing systems and see if they fit for your business requirement. Many times, it
would not be easy to understand the APIs of the other systems and integrate them as
someone else has developed those APIs.

Azure provides many connectors that you could leverage to integrate your business
applications with other systems pretty easily.

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[60]

In this chapter we will learn how easy is to integrate different services that are available in
Azure ecosystem.

Using Cognitive Services to locate faces
from the images
In this recipe, you will learn how to use the Computer Vision API to detect faces within an
image. We will be locating the faces and capture their coordinates and save them in
different Azure Table Storage based on the gender.

Getting ready
To get started, we need to create a Computer Vision API and configure the keys to access
the API in the Azure Function app.

Make sure that you have Azure Storage Explorer installed and have also configured to
access the storage where you are uploading the Blobs.

Creating a new Computer Vision API account
Log in to Azure Management portal. Click on the + icon, choose AI + Cognitive1.
Services, and choose Computer Vision API, as shown in the following
screenshot:

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[61]

The next step is to provide all the details to create an account, as shown in the2.
following screenshot. At the time of writing this, Computer Vision API has just
two pricing tiers where I have selected the free one F0, which allows 20 API calls
per minute and is limited to 5k calls each month:

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[62]

Configuring App settings
Once the Computer Vision API account is generated, you can navigate to the1.
Keys blade and grab any of the following keys, as shown in the following
screenshot:

Navigate to your Azure Function app, create Application settings with the name2.
Vision_API_Subscription_Key, and use any of the preceding keys as the
value for the new App settings. This key will be used by the Azure Functions
Runtime to connect and consume the Computer Vision Cognitive Service API.

How to do it...
Create a new function using one of the default templates named FaceLocator-1.
CSharp. You can refine the templates by choosing C# in the Language drop-
down and Samples in the Scenario drop-down:

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[63]

Once you choose the template, you need to provide the name of the Azure2.
Function along with the Path and Storage account connection. We will upload a
picture to Azure Blob Storage trigger (image) container (mentioned in the Path
parameter in the following screenshot) at the end of this section:

Note that while creating the function, the template creates one Blob Storage Table
output binding and allows us to provide the name of the Table name parameter.
However, we cannot assign the name of the parameter while creating the
function. We will be able to change it after it is created. Once you have reviewed
all the details, click on the Create button to create the Azure Function.

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[64]

Once the function is created, navigate to the Integrate tab and rename the Table3.
parameter name of the output binding to outMaleTable then click on the
Save button, as shown in the following screenshot:

Let's create another Azure Table Storage output binding to store all the4.
information for women by clicking on the New Output button in the Integrate
tab, selecting Azure Table Storage, and clicking on the Select button. This is how
it looks after providing the input values:

Once you have reviewed all the details, click on the Save button to create the5.
Azure Table Storage output binding to store the details about women.
Navigate to the code editor of the Run method and add the outMaleTable and6.
outFemaleTable parameters. This is how it should look:

 public static async Task Run(Stream image, string name,
 IAsyncCollector<FaceRectangle> outMaleTable,
 IAsyncCollector<FaceRectangle> outFemaleTable,
 TraceWriter log)

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[65]

Let's add a condition (highlighted in bold in the following code) to check the7.
gender and based on the gender, store the information in the respective Table
storage:

 foreach (Face face in imageData.Faces)
 {
 var faceRectangle = face.FaceRectangle;
 faceRectangle.RowKey = Guid.NewGuid().ToString();
 faceRectangle.PartitionKey = "Functions";
 faceRectangle.ImageFile = name + ".jpg";
 if(face.Gender=="Female")
 {
 await outFemaleTable.AddAsync(faceRectangle);
 }
 else
 {
 await outMaleTable.AddAsync(faceRectangle);
 }
 }

Create a new Blob Container named images using Azure Storage Explorer as8.
shown in the following screenshot:

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[66]

Let's upload a picture with a male and a female faces to the container9.
named images using Azure Storage Explorer as shown below.

The function gets triggered as soon as you upload an image. This is the JSON that10.
was logged in the log console of the function:

 {
 "requestId":"483566bc-7d4d-45c1-87e2-6f894aaa4c29",
 "metadata":{ },
 "faces":[
 {
 "age":31,
 "gender":"Female",
 "faceRectangle":{
 "left":535,
 "top":182,
 "width":165,
 "height":165
 }
 },
 {
 "age":33,
 "gender":"Male",
 "faceRectangle":{
 "left":373,

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[67]

 "top":182,
 "width":161,
 "height":161
 }
 }
]
 }

If you are a frontend developer with expertise in HTML5- and canvas-
related technologies, you can even draw squares, which locates the faces
in the image using the information provided by the cognitive services.

The function has also created two different Azure Table Storage tables, as shown11.
here:

How it works...
Initially, while creating the Azure Function using the face locator template, it creates a Table
storage output binding. We have used it to store the details about all the men. Later, we
created another output Table storage output binding to store the details about all the
women.

While we use all the default code that Azure Function templates provides to store all the
face coordinates in a single table, we just made a small change that checks whether the
person in the photo is male or female and stores the data based on the gender of the person
identified.

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[68]

Note that the APIs don't guarantee you that they will always provide the
right gender. So, in your production environments, you should have a
fallback mechanism to handle such situations.

There's more...
ICollector and IAsyncCollector are used for the bulk insertion of the
data.

The default code that the template provides invokes the Computer Vision API by passing
the image that we have uploaded to the Blob storage. The face locator templates invoke the
API call by passing the visualFeatures=Faces parameter, which returns information
about the following:

Age
Gender
Coordinates of the faces in the picture

You can learn more about the Computer Vision API at https:/ /docs.
microsoft. com/ en- in/ azure/ cognitive- services/ computer- vision/
home.

Use the Environment.GetEnvironmentVariable("KeyName") function to retrieve the
information stored in the App settings. In this case, the CallVisionAPI method uses the
function to retrieve the key that is essential for making a request to the Microsoft Cognitive
Services.

It's a best practice to store all the keys and other sensitive information in
App settings of the function app.

https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-in/azure/cognitive-services/computer-vision/home

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[69]

Azure SQL Database interactions using
Azure Functions
So far, you have learned how to store data in Azure Storage services such as Blobs, Queues,
and Tables. All these storage services are great for storing non-structured or semi-
structured data. However, we might have requirements for storing data in relational
database management systems such as Azure SQL Database.

In this recipe, you will learn how to utilize ADO.NET API to connect to the Azure SQL
Database and insert JSON data into a table named EmployeeInfo.

Getting ready
Navigate to the Azure Management portal and create the following:

Create a logical SQL Server named AzureCookbook in the same resource group1.
where you have your Azure Functions.
Create an Azure SQL Database named Cookbookdatabase by choosing Blank2.
Database in the Select Source drop-down of the SQL Database blade while
creating the database.
Create a firewall rule to your IP address so that you can connect to the Azure3.
SQL Databases using SQL Server Management Studio (SSMS). If you don't have
SSMS, install the latest version of SSMS. You can download it from https:/ /
docs.microsoft. com/ en- us/ sql/ ssms/ download- sql- server- management-
studio-ssms.
Click on the Show database connection strings link in the Essentials blade of4.
SQL Database, as shown in the following screenshot:

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[70]

Copy the connection string from the following blade. Make sure that you replace5.
the your_username and your_password templates with your actual username
and password:

Open your SSMS and connect to the Azure logical SQL Server that you created in6.
the previous steps.
Once you connect, create a new table named EmployeeInfo using the following7.
schema:

 CREATE TABLE [dbo].[EmployeeInfo](
 [PKEmployeeId] [bigint] IDENTITY(1,1) NOT NULL,
 [firstname] [varchar](50) NOT NULL,
 [lastname] [varchar](50) NULL,
 [email] [varchar](50) NOT NULL,
 [devicelist] [varchar](max) NULL,
 CONSTRAINT [PK_EmployeeInfo] PRIMARY KEY CLUSTERED
 (
 [PKEmployeeId] ASC
)
)

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[71]

How to do it...
Navigate to your function app and create a new HTTP trigger using the1.
HttpTrigger-CSharp template and choose Authorization Level as Anonymous,
as shown in the following screenshot:

Navigate to the Application settings of the function app, as shown in the2.
following screenshot:

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[72]

In the Application settings blade, under the Connection strings section, create a3.
new connection string by providing the following values:

Name of the Connection String: An identifier of the connection string
Value of the Connection String: Paste the connection string that you
have copied from the Show database connection strings section
Database Type: Select SQL Database

Navigate to the code editor of run.csx and replace the default code with the4.
following:

 #r "System.Data"
 #r "System.Configuration"
 using System.Net;
 using System.Data.SqlClient;
 using System.Data;
 using System.Configuration;
 public static async Task<HttpResponseMessage>
 Run(HttpRequestMessage req, TraceWriter log)
 {
 dynamic data = await req.Content.ReadAsAsync<object>();
 string firstname, lastname, email, devicelist;
 firstname = data.firstname;
 lastname = data.lastname;
 email = data.email;
 devicelist = data.devicelist;
 SqlConnection con =null;
 try
 {
 string query = "INSERT INTO EmployeeInfo (firstname,
 lastname, email, devicelist) " + "VALUES (@firstname,
 @lastname, @email, @devicelist) ";
 con = new
 SqlConnection(ConfigurationManager.ConnectionStrings
 ["MyConnectionString"].ConnectionString);
 SqlCommand cmd = new SqlCommand(query, con);
 cmd.Parameters.Add("@firstname", SqlDbType.VarChar,
 50).Value = firstname;

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[73]

 cmd.Parameters.Add("@lastname", SqlDbType.VarChar, 50)
 .Value = lastname;
 cmd.Parameters.Add("@email", SqlDbType.VarChar, 50)
 .Value = email;
 cmd.Parameters.Add("@devicelist", SqlDbType.VarChar)
 .Value = devicelist;
 con.Open();
 cmd.ExecuteNonQuery();
 }
 catch(Exception ex)
 {
 log.Info(ex.Message);
 }
 finally
 {
 if(con!=null)
 {
 con.Close();
 }
 }
 return req.CreateResponse(HttpStatusCode.OK, "Hello ");
 }

Note that you need to validate each and every input parameter. For the
sake of simplicity, the code that validates the input parameters is not
included. Make sure that you validate each and every parameter before
you save it into your database.

Let's run the HTTP trigger using the following test data right from the5.
Test console of Azure Functions:

 {
 "firstname": "Praveen",
 "lastname": "Kumar",
 "email": "praveen@example.com",
 "devicelist":
 "[
 {
 'Type' : 'Mobile Phone',
 'Company':'Microsoft'
 },
 {
 'Type' : 'Laptop',
 'Company':'Lenovo'
 }
]"
 }

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[74]

A record was inserted successfully, as shown in the following screenshot:6.

How it works...
The goal of this recipe was to accept input values from the user and save them to a
relational database where the data could be retrieved later for operational purposes. For
this, we used Azure SQL Database, a relational database offering also known as database as
a service (DBaaS). We have created a new SQL database, created firewall rules that allow
us to connect remotely from the local development workstation using SSMS. We have also
created a table named EmployeeInfo, which can be used to save the data.

We have developed a simple program using the ADO.NET API that connects to the Azure
SQL Database and inserts data into the EmployeeInfo table.

Processing a file stored in OneDrive using
an external file trigger
In the previous recipe, you learned how to process an individual request and store it in
Azure SQL Database. At times, we might have to integrate our custom applications with
different CRMs, which would not be exposed to other systems in general. So in these cases,
people might share the CRM data via Excel sheets or JSON in some external file storage
systems like OneDrive, FTP, and so on.

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[75]

In this recipe, you will learn how to leverage the Azure Function Runtime and its templates
to quickly integrate Azure Functions with OneDrive, retrieve the JSON file, process it, and
store the data into Azure SQL Database.

At the time of writing this, external file triggers are in an experimental
state. It's not suggested to use them in production yet.

Getting ready
We will perform the following steps before moving to the How to do it... section:

Create a OneDrive account at https:/ /onedrive. live. com/ . We will authorize1.
Azure Functions to use this account.
Create a folder named CookBook. We will be uploading the JSON file to this2.
folder. As soon as a new .json file is uploaded, the Azure Function will be
triggered.

How to do it...
Create a new Azure Function using the default templates ExternalFileTrigger-1.
CSharp, as shown in the following screenshot:

https://onedrive.live.com/
https://onedrive.live.com/
https://onedrive.live.com/
https://onedrive.live.com/
https://onedrive.live.com/
https://onedrive.live.com/
https://onedrive.live.com/
https://onedrive.live.com/
https://onedrive.live.com/
https://onedrive.live.com/

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[76]

Provide a meaningful name and enter a valid path that you have created in your2.
OneDrive account, as shown in the following screenshot:

Click on the new button highlighted in the preceding screenshot to authorize3.
access to the Azure Function Runtime from your OneDrive.

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[77]

In Add external file connection, choose OneDrive in the API drop-down, and4.
click on the Configure required settings button to link External Connections:

As you don't have any existing connections, you need to click on the Create New5.
button of the preceding step, which would take you through a set of operations
that prompts you to enter your OneDrive account and click on the Authorize
button. Clicking on the Authorize button lets Azure Functions access your
OneDrive account. Repeat the same steps for the External File (Preview) output
($return) section's External File connection drop-down, as shown in the
following screenshot, and click on the Create button to create the Azure Function.
Let the value of the Path be as it is. We will not need the External File (Preview)
output ($return) binding. We will delete it in a moment.
Once you are ready, click on the Create button to create the Azure Function.6.
Once the Azure Function is created, navigate to the Integrate tab, click on the7.
External File (Preview) ($return) output binding, as shown in the following
screenshot:

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[78]

The ExternalFileTrigger-CSharp Azure Function template creates a default8.
output binding. We don't need it for our example. Let's delete the output
bindings by clicking on the delete button highlighted in the following screenshot:

Navigate to the code editor of the run.csx file and replace the default code with9.
the following code then click on the Save button. In this code sample, we are just
outputting the elements of the JSON file that we uploaded to the OneDrive. In
real-time scenarios, you might have to save them to a persistent medium, such as
database that is not demonstrated in this example:

 #r "Newtonsoft.Json"
 using Newtonsoft.Json;
 using System;
 public static void Run(string inputFile, string name,
 TraceWriter log)
 {
 log.Info($"C# External trigger function processed file: " +
 name);
 var jsonResults = JsonConvert.DeserializeObject<dynamic>
 (inputFile);
 for(int nIndex=0;nIndex<jsonResults.Count;nIndex++)
 {
 log.Info(Convert.ToString(jsonResults[nIndex].firstname
));
 log.Info(Convert.ToString(jsonResults[nIndex].firstname
));
 log.Info(Convert.ToString(jsonResults[nIndex].devicelist
));
 }
 }

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[79]

Let's create a JSON file that has all the data related to the employee contact10.
information and the details of the devices that he/she possesses. This is the
structure of the JSON content:

 {
 "firstname": "Srikaracharya",
 "lastname": "Vatkanambi",
 "email": "vsrikar@gmail.com",
 "devicelist":
 [
 { "DeviceType": "iPhone",
 "Color":"White"
 },
 { "DeviceType": "Laptop",
 "Color":"Black"
 }
]
 }

I have created a sample .json file with three test records and uploaded them to11.
my OneDrive account, as shown in the following screenshot:

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[80]

As soon as the file is uploaded to the OneDrive, the function gets triggered and 12.
prints the contents of the file in the Azure Function Logs, as shown in the
following screenshot:

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[81]

Monitoring tweets using Logic Apps and
notifying when popular users tweet
One of my colleagues who works for a social grievance management project is responsible
for monitoring the problems that users post on social platforms such as Facebook, Twitter,
and so on. He was facing the problem of continuously monitoring the tweets posted on his
customer's Twitter handle with specific hashtags. His major job was to respond quickly to
the tweets by users with a huge follower count, say, users with more than 50K followers. So,
he was looking for a solution that keeps monitoring a particular hashtag and alerts him
whenever an user with more than 50K followers tweets so that he can quickly have his team
respond to that user.

Note that for the sake of simplicity, we will have the condition to check for
200 followers instead of 50K followers.

Before I knew about Azure Logic Apps, I thought it would take a few weeks to learn,
develop, test, and deploy such a solution. Obviously, it would take a good amount of time
to learn, understand, and consume Twitter (or any other social channel) API to get the
required information and build an end-to-end solution that solves the problem.

Fortunately, after learning about Logic Apps and its out-of-the-box connectors, it hardly
takes 10 minutes to design a solution for the problem that my friend has described.

In this recipe, you will learn how to design a logic app that integrates with Twitter (for
monitoring tweets) and Gmail (for sending emails).

Getting ready
We need to have the following to work with this recipe:

A valid Twitter account
A valid Gmail account

While working with the recipe, we will need to authorize Azure Logic Apps to access your
accounts.

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[82]

How to do it...
We will go through the following steps:

Create a new Logic App.1.
Design the Logic app with Twitter and Gmail connectors.2.
Test the Logic App by tweeting the tweets with the specific hashtag.3.

Create a new Logic App
Log in to the Azure Management portal, click on New, choose Web + Mobile,1.
and select Logic App, as shown in the following screenshot:

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[83]

In the Create logic app blade, once you provide the Name of the Logic App,2.
Resource group, Subscription, and Location, click on the Create button to create
the Logic App:

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[84]

Designing the Logic App with Twitter and Gmail
connectors

Once created, navigate to the Logic App Designer and choose Blank Logic App,1.
as shown in the following screenshot:

As soon as you choose Blank Logic App, you will be prompted to choose2.
Connectors, as shown in the following screenshot:

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[85]

In the Connectors list, click on Twitter. Once you choose Twitter, you will be3.
prompted to connect to Twitter by providing your Twitter account credentials. If
you have already connected, it will directly show you the list of Triggers
associated with the Twitter connector, as shown in the following screenshot:

Once you click on the When a new tweet is posted trigger, you will be prompted4.
to provide Search text (for example, hashtag, keywords, and so on) and the
Frequency of which you would like the Logic App to poll the tweets. This is how
it looks after you provide the details:

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[86]

Let's add a new condition by clicking on Next Step and then clicking on Add a5.
condition, as shown in the following screenshot:

As soon as you click on Add a condition, the following screen will be displayed,6.
where you can choose the values for the condition and choose what you would
like to add when the condition evaluates to true or false:

When you click on the Choose a value input field, you will get all the parameters7.
on which you could add a condition; in this case, we need to choose Followers
count, as shown in the following screenshot:

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[87]

Once you choose the Followers Count parameter, you create a condition8.
(Followers count is greater than or equal to 200), as shown in the following
screenshot:

In the If Yes section of the preceding Condition, search for Gmail connection and9.
select Gmail - Send email, as shown in the following screenshot:

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[88]

It will ask you to log in if you haven't already. Provide your credentials and10.
authorize Azure Logic Apps to allow access to your Gmail account.
Once you authorize, you can frame your email with dynamic content with the11.
Twitter parameter, as shown in the following screenshot:

Once you are done, click on the Save button, as shown in the following12.
screenshot:

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[89]

Testing the Logic App functionality
Let's post a tweet on Twitter with the hashtag #AzureFunctions, as shown in1.
the following screenshot:

After a minute or so, the Logic App should have been triggered. Let's navigate to2.
the Overview blade of the Logic App that we have created now and view Runs
history:

Yay! It has triggered twice and I have received the emails. One of them is shown3.
in the following screenshot:

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[90]

How it works...
You have created a new Logic App and have chosen the Twitter connector to monitor the
tweets posted with the hashtag #AzureFunctions each minute. If there are any tweets
with that hashtag, it checks whether the follower count ;is greater than or equal to 200. If the
follower count meets the condition, then a new action is created with a new connector
Gmail that is capable of sending an email with the dynamic content being framed using the
Twitter connector parameters.

See also
The Integrating Logic Apps with Azure Functions recipe

Integrating Logic Apps with Azure Functions
In the previous recipe, you learned how to integrate different connectors using Logic Apps.
In this recipe, we will implement the same solution that we implemented in the previous
recipe by just moving the conditional logic that checks the follower count to Azure
Functions.

Getting ready
Before moving further we will perform the following steps:

Create a SendGrid account (if not created already), grab the SendGrid API key,1.
and create a new key in the Application settings of the function app.
Install Postman to test the GenericWebHook-C# trigger. You can download the2.
tool from https:/ /www. getpostman. com/ .

https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[91]

How to do it...
Create a new function by choosing the GenericWebHook-C# trigger and name it1.
ValidateTwitterFollowerCount.
Replace the default code with the following:2.

 #r "Newtonsoft.Json"
 #r "SendGrid"
 using System;
 using System.Net;
 using Newtonsoft.Json;
 using SendGrid.Helpers.Mail;
 public static void Run(HttpRequestMessage req,
 TraceWriter log,
 out Mail message
)
 {
 log.Info($"Webhook was triggered!");
 string jsonContent = req.Content.ReadAsStringAsync().Result;
 dynamic data = JsonConvert.DeserializeObject<dynamic>
 (jsonContent);
 string strTweet = "";
 if(data.followersCount >= 200)
 {
 strTweet = "Tweet Content" + data.tweettext;
 message = new Mail();
 message.Subject = $"{data.Name} with
 {data.followersCount} followers has posted a tweet";
 message.From = new Email("donotreply@example.com");
 message.AddContent(new Content("text/html",strTweet));
 Personalization personalization = new Personalization();
 personalization.AddTo(new
 Email("to@gmail.com"));
 message.AddPersonalization(personalization);
 }
 else
 {
 message = null;
 }
 }

Navigate to the Integrate tab and add a new output binding, SendGrid, by3.
clicking on the New Output button.

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[92]

Provide the following values in the SendGrid output (message) binding:4.

Test the function using Postman by choosing the parameters highlighted in the5.
following screenshot. In the next steps, after we integrate the Azure Function
ValidateTwitterFollowerCount, all the following input parameters, such as
followersCount, tweettext, and Name, will be posted by the Twitter
connector of the Logic App:

Create a new Logic App named6.
NotifywhenTweetedbyPopularUserUsingFunctions.
Start designing the app with the Blank Logic App template and choose the7.
Twitter connector and configure Search text, Frequency, and Interval.

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[93]

Click on the New step to add an action by choosing the Add an action button, as8.
shown in the following screenshot:

In the Choose an action section, choose Azure Functions as a connector, as9.
shown in the following screenshot:

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[94]

Clicking on Azure Functions shows the following action. Click on Azure10.
Functions - Choose an Azure function:

Now you will see all the available function apps. Click on the11.
AzureFunctionCookbook function app and then select the Azure Functions -
ValidateTwitterFollowerCount function, as shown in the following screenshot:

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[95]

In the next step, you need to frame the input that needs to be passed from the12.
Logic App to the GenericWebHook-C# function
ValidateTwitterFollowerCount, which we have developed. Let's frame input
JSON in the same way that we have created while testing the GenericWebHook-
C# function using Postman, as shown in the following screenshot (the only
difference is that the values such as followersCount, Name, and tweettext are
dynamic now):

Once you have reviewed all the parameters that the13.
ValidateTwitterFollowerCount function expects, click on the Save button to
save the changes.
You can wait for a few minutes or post a tweet with the hash tag that you have14.
configured in the Search text input field.

Seamless Integration of Azure Functions with Other Azure Services Chapter 3

[96]

There's more...
In the Azure Function ValidateTwitterFollowerCount, we have
hardcoded the threshold follower count of 200 in the code. It's a good
practice to store these values as configurable items by storing them in
Application settings.

If you don't see the intended dynamic parameter, click on the See more button, as shown in
the following screenshot:

See also
The Sending an email notification to the end user dynamically recipe in Chapter 2,
Working with Notifications Using SendGrid and Twilio Services

4
Understanding the Integrated

Developer Experience of Visual
Studio Tools for Azure

Functions
In this chapter, we will cover the following :

Creating the function app using Visual Studio 2017
Debugging C# Azure Functions on a local staged environment using Visual
Studio 2017
Connecting to the Azure Cloud storage from local Visual Studio environment
Deploying the Azure Function app to Azure Cloud using Visual Studio
Debugging live C# Azure Function hosted on the Microsoft Azure Cloud
environment using Visual Studio

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[98]

Introduction
In all our previous chapters, we looked at how to create Azure Functions right from the
Azure Management portal. The following are a few of the features:

You can quickly create a function just by selecting one of the built-in templates
provided by the Azure Function Runtime
Developers need not worry about writing the plumbing code and understanding
how the frameworks work
Make the configuration changes right within the UI using the standard editor

In spite of all the advantages mentioned, somehow, developers might not find it
comfortable as they might have become used to working with their favorite Integrated
Development Environments (IDEs) since a long time. So, the Microsoft team has come up
with some tools that help developers integrate them into the Visual Studio so that they can
leverage some of the critical IDE features that accelerate the development efforts. The
following are a few of them:

You will have IntelliSense support
You can debug the code line by line
Quickly view the values of the variables while you are debugging the application
Integration with version control systems such as Visual Studio Team Services
(VSTS)

Currently, the Visual Studio tools for the function supports debugging only for C# (at the
time of writing this). Microsoft would come up with all these cool features in the future for
other languages. If you would prefer to use Visual Studio Code to develop Azure Functions
for JavaScript (Node.js), you can have debugging support.

You will learn some of the preceding features in this chapter and see how to integrate code
with VSTS in Chapter 10, Implement Continuous Integration and Deployment of Azure
Functions Using Visual Studio Team Services.

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[99]

Creating the function app using Visual
Studio 2017
In this recipe, you will learn how to create an Azure Function in your favorite IDE Visual
Studio 2017.

Getting ready
You need to download and install the following tools and software:

Download Visual Studio 2017 Preview Version 15.3.0, Preview 2.0, or higher. You
can download it from https:/ /www. visualstudio. com/ vs/ preview/ .
Choose Azure development in the Workloads section while installing, as shown
in the following screenshot, and click on the Install button.

Download Azure Function Tools for Visual Studio 2017 from https:/ /
marketplace. visualstudio. com/ items? itemName= AndrewBHall- MSFT.
AzureFunctionToolsforVisualStudio2017.

https://www.visualstudio.com/vs/preview/
https://www.visualstudio.com/vs/preview/
https://www.visualstudio.com/vs/preview/
https://www.visualstudio.com/vs/preview/
https://www.visualstudio.com/vs/preview/
https://www.visualstudio.com/vs/preview/
https://www.visualstudio.com/vs/preview/
https://www.visualstudio.com/vs/preview/
https://www.visualstudio.com/vs/preview/
https://www.visualstudio.com/vs/preview/
https://www.visualstudio.com/vs/preview/
https://www.visualstudio.com/vs/preview/
https://www.visualstudio.com/vs/preview/
https://www.visualstudio.com/vs/preview/
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AndrewBHall-MSFT.AzureFunctionToolsforVisualStudio2017

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[100]

How to do it...
Open Visual Studio and choose File and then click on New Project. In the New1.
Project dialog box, in the Installed templates, under Visual C#, select Cloud and
then select the Azure Functions template:

Provide the name of the function app. Click on the OK button to create the2.
function app after choosing a location:

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[101]

We have created the Azure Function successfully. Now let's add an HTTP trigger3.
function that accepts web requests and sends a response to the client.
Right click on the project, click on Add, and select New Item. In the Add New4.
Item window, choose Azure Function, as shown in the following screenshot:

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[102]

In the New Azure Function dialog box, as shown in the following screenshot,5.
provide the required values and click on the Create button to create the new
HTTPTrigger function:

After you create a new function, a new class will be created, as shown in the6.
following screenshot:

We have now successfully created a new HTTP triggered function app using our favorite
IDE Visual Studio 2017.

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[103]

How it works...
Visual Studio tools for Azure Functions help developers use their favorite IDE, which they
have been using since ages. Using the Azure Function Tools, you can use the same set of
templates that the Azure Management portal provides in order to quickly create and
integrate with the cloud services without writing any (or minimal) plumbing code.

The other advantage of using Visual Studio tools for functions is that you don't need to
have a live Azure subscription. You can debug and test Azure Functions right on your local
development environment. Azure CLI and related utilities provide us with all the required
assistance to execute the Azure Functions.

There's more...
One of the most common problems that developers face while developing any application
on their local environment is that everything works fine on my local machine but not on the
production environment. Developers need not worry about this in the case of Azure
Functions. The Azure Functions Runtime provided by the Azure CLI tools is exactly the
same as the runtime available on Azure Cloud.

Note that you can always use and trigger an Azure service running on the
cloud even when you are developing the Azure Functions locally.

Debugging C# Azure Functions on a local
staged environment using Visual Studio
2017
Once the basic setup of creating the function is complete, the next step is to start working on
developing the application as per your needs. Developing code on a daily basis is not at all
a cake walk; developers will end up facing technical issues. They need tools to help them
identify the root cause of the problem and fix it to make sure they are delivering the
solution. These tools include debugging tools that help developers step into each line of the
code and view the values of the variable and objects and get a detailed view of the
exceptions.

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[104]

In this recipe, you will learn how to configure and debug an Azure Function in a local
development environment within Visual Studio.

Getting ready
Download and install the following:

Azure CLI (if you don't have these tools installed, Visual Studio will
automatically download them when you run your functions from Visual Studio.)

How to do it...
In our previous recipe, we created the HTTPTrigger function using Visual1.
Studio. Let's build the application by clicking on Build and then clicking on
Build Solution.
Open the HTTPTriggerCSharpFromVS.cs file and create a breakpoint by 2.
pressing the F9 key, as shown in the following screenshot:

Press the F5 key to start debugging the function. When you press F5 key for the3.
first time, Visual Studio prompts you to download Visual Studio CLI tools. These
tools are essential for executing the Azure Function in Visual Studio:

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[105]

The Azure Function CLI is now renamed to Azure Function Core Tools.
You can learn more about them at https:/ /www. npmjs. com/ package/
azure- functions- core- tools.

Clicking on Yes in the preceding step would start downloading the CLI tools.4.
This would take a few minutes to download and install the CLI tools.
After the Azure Function CLI tools are installed successfully, a job host will be5.
created and started. It starts monitoring the requests on a specific port for all the
functions of our function app. The following is the screenshot that shows that the
job host has started monitoring the requests to the function app:

https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools
https://www.npmjs.com/package/azure-functions-core-tools

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[106]

Let's try to access the function app by making a request to6.
http://localhost:7071 in one of your favorite browsers:

Now, key in the complete URL of our HTTP trigger in the browser. It should look7.
like this:
http://localhost:7071/api/HttpTriggerCsharpFromVS?name=Praveen
Sreeram

As soon as we hit the Enter key in the location bar of your browser after typing8.
the correct URL of the Azure Function, the Visual Studio debugger hits the
debugging point (if you have one), as shown in the following screenshot:

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[107]

You can also view the data of your variables, as shown in the following9.
screenshot:

Once you complete the debugging, you can click on the F5 key to complete the10.
execution process. Once the execution of the entire function is complete, you
would see the output response in the browser, as shown in the following
screenshot:

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[108]

The function execution log will be seen in the job host console, as shown in the 11.
following screenshot:

You can add more Azure Functions to the function app, if required. In the next12.
recipe, we will look at how to connect to Azure Cloud storage from the local
environment.

How it works...
The job host works as a server that listens to a specific port. If there are any requests to that
particular port, it automatically takes care of executing the requests and sends a response.

The job host console provides you with the following details:

The status of the execution along with the request and response data
The details about all the functions available in the function app

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[109]

There's more...
Using Visual Studio, you can directly create precompiled functions, which means when you
build your functions, it creates a .dll file that can be referenced in other applications, as
you do for your regular classes. The following are two of the advantages of using
precompiled functions:

Precompiled functions have better performance as they wouldn't be required to
compile on the fly
You can convert your traditional classes into Azure Functions easily and refer
them in other applications seamlessly

Connecting to the Azure Cloud storage from
local Visual Studio environment
In both of the previous recipes, you learned how to create and execute Azure Functions in a
local environment. We have triggered the function from a local browser. However, in this
recipe, you will learn how to trigger an Azure Function in your local environment when an
event occurs in Azure. For example, when a new Blob is created in a storage account, you
can have your function triggered on your local machine. This helps the developers test their
applications upfront before they deploy them to the production environment.

Getting ready
Create a storage account and a container named cookbookfiles in Azure.1.
Install Microsoft Azure Storage Explorer from http:/ /storageexplorer. com/ .2.

http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[110]

How to do it...
Open the FunctionAppInVisualStudio Azure Function app in Visual Studio and1.
add a new function named BlobTriggerCSharp, as shown in the following
screenshot:

In the storage account connection, provide AzureWebJobsStorage as the name2.
of the connection string and also provide the name of the Blob container (in my
case, it is cookbookfiles) in the Path input field and click on the Create button
to create the new Blob trigger function.

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[111]

A new Blob trigger function gets created, as shown in the following screenshot:3.

If you remember the Building a backend Web API using HTTP triggers recipe from4.
Chapter 1, Accelerate Your Cloud Application Development Using Azure Function
Triggers and Bindings, the Azure Management portal allowed us to choose a new
or existing storage account. However, the preceding dialog box is not connected
to your Azure subscription. So, you need to navigate to the storage account and
copy the connection string by navigating to the Access Keys blade of the storage
account in the Azure Management portal, as shown in the following screenshot:

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[112]

Once you have copied the connection string, paste it in the5.
local.settings.json file, which is in the root folder of the project. This file is
created when you create the function app. The local.settings.json file
should look something like what is shown in the following screenshot after you
add the connection string to the key named AzureWebJobsStorage:

Open the BlobTriggerCSharp.cs file and create a breakpoint, as shown in the6.
following screenshot:

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[113]

Now press the F5 key to start the job host, as shown in the following screenshot:7.

I have added a new Blob file using Azure Storage Explorer, as shown in the 8.
following screenshot:

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[114]

As soon as the Blob has been added to the specified container (in this case, it is9.
cookbookfiles), which is sitting in the cloud in a remote location, the job host
running in my local machine detects that a new Blob has been added and the
debugger hits the function, as shown in the following screenshot:

How it works...
In this BlobTriggerCSharp class, the Run method has the WebJobs attributes that has the
connection string (in this case, it is AzureWebJobsStorage). This instructs the runtime to
refer to the Azure Storage connection string in the local settings configuration file with the
key named the AzureWebJobsStorage connection String. When the job host starts
running, it uses the connection string and keeps an eye on the storage accounts containers
that we have specified. Whenever a new Blob is added/updated, it automatically triggers
the Blob trigger in the current environment.

There's more...
When you create Azure Functions in the Azure Management portal, you would need to
create triggers and output bindings in the Integrate tab of each Azure Function. However,
you can just configure WebJob attributes when you are creating the function from the
Visual Studio 2017 IDE.

You can learn more about WebJob attributes at https:/ /docs. microsoft.
com/en- us/ azure/ app- service- web/ websites- dotnet- webjobs- sdk.

https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[115]

See also
The Creating the function app using Visual Studio 2017 recipe

Deploying the Azure Function app to Azure
Cloud using Visual Studio
So far the function app is just a regular application within Visual Studio. To deploy the
function app along with its functions, we need to either create the following new resources
or select existing ones to host the new function app:

The resource group
The App Service plan
The Azure Function app

You can provide all these details directly from Visual Studio without opening the Azure
Management portal. You will learn how to do that in this recipe.

How to do it...
Right click on the project and then click on the Publish button to open the1.
Publish window.
In the Publish window, choose the Create New option and click on the Publish2.
button, as shown in the following screenshot:

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[116]

In the Create App Service window, you can choose the existing resources or click3.
on the New button to choose the new Resource Group, the App Service Plan,
and the Storage Account, as shown in the following screenshot:

In most of the cases, you would like to go with Consumption plan for hosting the4.
Azure Functions unless you have a strong reason and would like to utilize one of
your existing App Services. To choose the Consumption plan, you need to click
on the New button that is available for the App Service plan shown in the
preceding screenshot. Clicking on the New button will open another popup,
where you can choose the Consumption plan. As shown in the following
screenshot, select Consumption in the Size drop-down and click on the OK
button:

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[117]

After reviewing all the information, click on the Create button of the Create App5.
Service window. As soon as you click on the Create button, it starts deploying
the services to Azure, as shown in the following screenshot:

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[118]

If everything goes fine, you can view the new function app created in the Azure6.
Management portal, as shown in the following screenshot:

Hold on! Our job in Visual Studio is not yet done. We have just created the7.
required services in Azure right from Visual Studio IDE. Our next job is to
publish the code from the local workstation to Azure Cloud. As soon as the
deployment is complete, you will be taken to the web deploy step, as shown in
the following screenshot. Click on the Publish button to start the process of
publishing the code to your Azure Function app:

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[119]

After a few seconds, you would see something similar in the Output window of8.
your Visual Studio:

That's it. We have completed the deployment of your function app and its9.
functions to Azure right from your favorite development IDE Visual Studio. You
can review the function deployment in the Azure Management portal. Both
Azure Functions got created successfully, as shown in the following screenshot:

There's more...
Azure Functions that are created from Visual Studio 2017 are precompiled, which means
you deploy the .dll files from Visual Studio 2017 to Azure. So, you cannot edit the
functions' code in Azure after you deploy. However, you can make changes to the
configurations, such as changing the Azure Storage connection string, the container path,
and so on. We will look at how to do that in the next recipe.

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[120]

See also
The Debugging live C# Azure Function hosted on the Microsoft Azure Cloud
environment using Visual Studio recipe

Debugging live C# Azure Function hosted on
the Microsoft Azure Cloud environment
using Visual Studio
In one of the previous recipes, in the Connecting to the Azure Cloud storage from local Visual
Studio environment recipe, you learned how to connect the cloud storage account from the
local code. In this recipe, you will learn how to debug the live code running in the Azure
Cloud environment. We will be performing the following steps in the BlobTriggerCSharp
function of the FunctionAppinVisualStudio function app:

Change the path of the container in the Azure Management portal to the new
container
Open the function app in Visual Studio 2017
Attach the debugger from within Visual Studio 2017 to the required Azure
Function
Create a Blob to the new storage container
Debug the application after the breakpoints are hit

Getting ready
Create a container named cookbookfiles-live in the storage account. We will be
uploading a Blob to this container.

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[121]

How to do it...
Navigate to the BlobTriggerCSharp function in the Azure Management portal1.
and change the path of the path variable, as shown in the following screenshot:

Open the function app in Visual Studio 2017. Open Server Explorer and navigate2.
to your Azure Function, in this case, FunctionAppinVisualStudio2017, as shown
in the following screenshot:

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[122]

Right-click on the function and click on Attach Debugger, as shown in the3.
following screenshot:

As soon as the Attach Debugger is clicked, Visual Studio will take a few 4.
moments to enable remote debugging, as shown in the following screenshot:

Once the remote debugging is enabled, the function app URL will be opened in5.
the browser, as shown in the following screenshot, indicating that our function
app is running:

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[123]

Navigate to Storage Explorer and upload a new file (in this case, I uploaded6.
EmployeeInfo.json) to the cookbookfiles-live container, as shown in the
following screenshot:

Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions Chapter 4

[124]

After a few moments, the debug breakpoint will be hit, shown as follows, where7.
you can view the filename that has been uploaded.

See also
The Connecting to the Azure Cloud storage from local Visual Studio environment recipe

5
Exploring Testing Tools for the
Validation of Azure Functions

In this chapter, we will explore different ways of testing the Azure Functions in more detail
with the following recipes:

Testing HTTP functions using the following techniques:
Postman
The Azure Management portal
Test Queues and Blobs using Storage Explorer

Testing an Azure Function on a staged environment using deployment slots
Load testing Azure Functions using Visual Studio Team Services (VSTS)
Creating and testing Azure Function locally using Azure CLI tools
Testing and validating Azure Function responsiveness using Application Insights

Introduction
In all our previous chapters, you learned how to develop Azure Function and where they
are useful and looked at validating the functionality of those functions.

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[126]

In this chapter, we will start looking at ways of testing different Azure Functions. For
example, running tests of HTTP trigger functions using Postman, usage of Microsoft
Storage Explorer to test Azure Blob triggers, Queue triggers, and other storage-service-
related triggers. You will also learn how to perform a simple load test on an HTTP trigger to
understand how the serverless architecture works on provisioning the instances in the
backend without developers worrying about the scaling settings on different factors. Azure
Function runtime will automatically take care of scaling the instances.

You will also learn how to set up a test that checks the availability of our functions by
continuously pinging the application endpoints on a predefined frequency from multiple
locations.

Testing Azure Functions
Azure Function runtime allows us to create and integrate with many Azure services. At the
time of writing this, there are more than 20 types of Azure Functions you can create. You
also need to understand how to test these functions. In this recipe, you will learn how to test
the most common Azure Functions, listed as follows:

Testing HTTP triggers using Postman
Testing the Blob trigger using Microsoft Storage Explorer
Testing the Queue trigger using the Azure Management portal

Getting ready
Install the following tools if you haven't installed them yet:

Postman: You can download it from https:/ /www. getpostman. com/

Microsoft Azure Storage Explorer: You can download it from http:/ /
storageexplorer. com/

You can use Storage Explorer to connect to the storage accounts and view all
the data available different storage services, such as Blobs, Queues, Tables,
and Files. You can also create, update, and delete them right from the Storage
Explorer.

https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[127]

How to do it...
In this section, we will create three Azure Function using the default templates available in
the Azure Management portal and test them in different tools.

Testing HTTP triggers using Postman
Create an HTTP trigger function that accepts the First name and Last name1.
parameters and sends them in the response. Once it is created, make sure you set
Authorization Level as Anonymous.
Replace the default code with the following. Note that for the sake of simplicity, I2.
have removed the validations. In the real-time applications, you need to validate
each and every input parameter:

 using System.Net;
 public static string Run(HttpRequestMessage req, TraceWriter
 log)
 {
 log.Info("C# HTTP trigger function processed a request.");
 string Firstname =
 req.GetQueryNameValuePairs().FirstOrDefault(q =>
 string.Compare(q.Key, "Firstname", true) == 0).Value;
 string Lastname =
 req.GetQueryNameValuePairs().FirstOrDefault(q =>
 string.Compare(q.Key, "Lastname", true) == 0).Value;
 return "Hello " + Firstname + " " + Lastname;
 }

Open the Postman tool and complete the following:3.
The first step is to choose the type of HTTP method using which you1.
would like to make the HTTP request. As our function accepts most of
the methods by default, choose the GET method, shown as follows:

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[128]

The next step is to provide the URL of the HTTP trigger. Please note2.
that you would need to replace <HttpTriggerTestUsingPostman>
with your actual HttpTrigger function name shown as follows:

Click on the Send button to make the request. If you have provided all3.
the details expected by the API, then you would see a Status code = 200
along with the response.

Testing Blob trigger using the Microsoft Storage
Explorer

Create a new Blob trigger by providing a storage account and a container where1.
you store the Blob, shown as follows:

Let's connect to the storage account that we will be using in this recipe. Open2.
Microsoft Azure Storage Explorer and click on the button that is highlighted in
the following screenshot to connect to Azure Storage:

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[129]

You will be prompted to enter a storage connection string, shared access3.
signature (SAS), or account key. For this recipe, let's use the storage connection
string. Navigate to Storage Account and copy the connection string in the Access
Keys blade and paste it in the Connect to Azure Storage popup, shown as
follows:

Clicking on the Next button in the preceding screenshot will take you to the4.
Connection Summary window, which displays the account name and other
related details for the confirmation. Click on the Connect button to get connected
to the chosen Azure Storage account.

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[130]

As shown in the following screenshot, you are now connected to the Azure5.
Storage account, where you can manage all your Azure Storage services:

Now let's create a storage container named samples-workitems. Right-click on6.
the Blob Containers folder and click on Create Blob Container to create a new
Blob container named samples-workitems. Once the container is created, click
on the Upload files button, as shown in the following screenshot:

In the Upload Files window, choose a file that you would like to upload and click7.
on the Upload window.
Immediately navigate to the Azure Function code editor and look at the Logs8.
window, as shown in the following screenshot. The log shows the Azure
Function getting triggered successfully:

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[131]

Testing Queue trigger using the Azure Management
portal

Create a new Queue trigger named QueueTriggerTestusingPortal , as shown1.
in the following screenshot. Note the Queue name myqueue-items. We need to
create a Queue service with the same name later using the Azure Management
portal:

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[132]

Navigate to the storage account's Overview blade and click on Queues, as shown2.
in the following screenshot:

In the Queue service blade, click on Queue to add a new Queue:3.

Provide a Queue name as myqueue-items in the Add queue popup, as shown in4.
the following screenshot, which we used while creating the Queue trigger. Click
on OK to create the Queue service:

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[133]

Once the Queue service is created, we need to create a Queue message. In the5.
Azure Management portal, click on the Queue service myqueue-items to
navigate to the Messages blade. Click on the Add message button, as shown in
the following screenshot, provide a Queue message text, and click on OK to
create the Queue message:

Immediately navigate to the Queue trigger QueueTriggerTestusingPortal and6.
view the Logs blade to understand how the Queue function got triggered, as
shown in the following screenshot:

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[134]

There's more...
For all your HTTP triggers, if you would like to allow your API consumers only the POST
method, then you can restrict it by choosing Selected methods and choosing only POST in
Selected HTTP methods , as shown in the following screenshot:

Testing an Azure Function on a staged
environment using deployment slots
In general, every application would need preproduction environments such as staging,
beta, and so on for reviewing the functionalities before publishing them for the end users.

Though the preproduction environments are great and help multiple stakeholders validate
the application functionality against the business requirements, there are some pain points
in managing and maintaining them. The following are a few of them:

We would need to create a separate environment for setting them up
Once everything is reviewed in preproduction and IT Ops team gets a go-ahead,
there would be a bit of downtime in the production environment while deploying
the code base of the new functionalities

All the preceding limitations can be covered in Azure Functions using a feature called slots
(these are called deployment slots in App Service environments). Using slots, you can set
up a preproduction environment where you can review all the new functionalities and
promote them (by swapping, which we will discuss in a moment) to the production
environment seamlessly whenever you need.

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[135]

How to do it...
Create a new function app named MyProductionApp.1.
Create a new HTTP trigger and name it MyProd-HttpTrigger1. Please replace2.
the last line with the following:

 return name == null ?
 req.CreateResponse(HttpStatusCode.BadRequest, "Please pass a
 name on the query string or in the request body")
 : req.CreateResponse(HttpStatusCode.OK, "Welcome to MyProd-
 HttpTrigger1 of Production App " + name);

Create another new HTTP trigger and name it MyProd-HttpTrigger2. Use the3.
same code that you used for MyProd-HttpTrigger1. Just replace the last line
with the following.

 return name == null ?
 req.CreateResponse(HttpStatusCode.BadRequest, "Please pass a
 name on the query string or in the request body")
 : req.CreateResponse(HttpStatusCode.OK, "Welcome to MyProd-
 HttpTrigger2 of Production App " + name);

Assume that both the functions of the function app are live on your production4.
environment with the URL
https://<<functionappname.azurewebsites.net>>.
Now, the customer has requested us to make some changes to both functions.5.
Instead of directly making the changes to the functions of your production
function app, you might need to create a slot.

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[136]

Hold on! Before you can create a slot, you first need to enable the feature by6.
navigating to the Function app settings under the General Settings of the
Platform features tab of the function app, Once you click on the Function app
settings, a new tab will be opened where you can enable the Slots(preview) as
shown in the following screenshot:

Click on the ON button available in the Slots (preview) section highlighted in the7.
preceding screenshot. As soon as you turn it on, the slots section will be hidden
as it is a one-time setting. Once it's enabled, you cannot disable it.
OK, let's create a new slot named MyStagedApp with all the functions that we8.
have in our function app named MyProductionApp.

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[137]

Click on the + icon available near the Slots (preview) section, as shown in the9.
following screenshot:

It prompts you to enter a name for the new slot. Provide a meaningful name10.
something such as Staging , as shown in the following screenshot:

Once you click on Create, a new slot will be created, as shown in the following11.
screenshot:

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[138]

The URL for the slot will be12.
https://<<functionappname>>-<<Slotname>>.azurewebsites.net>>.
Each slot within a function app would have a different URL.
To make a staged environment complete, you need to copy all the Azure13.
Functions from the production environment (in this case, the MyProductionApp
app) to the new staged slot named Staging. Create two HTTP triggers and copy
both the functions' code (MyProd-HttpTrigger1 and MyProd-HttpTrigger2)
from MyProductionApp to the new Staging slot. Basically, you need to copy all
the functions to the new slot manually.
Replace the production app instances to staging app in the last line of both the14.
functions in the Staging slot. This is useful for testing the output of the swap
operation.

Note that in all the slots that you create as a preproduction app, you need to
make sure that you have the same Function names that you have in your
production environment.

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[139]

Click on the Swap button available in the Deployment slots blade, as shown in15.
the following screenshot:

In the Swap blade, you need to choose the following:16.
Swap Type: Choose the Swap option.
Source: Choose the slot that you would like to move to production. In
this case, Staging in general, you can even swap across non-production
slots.

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[140]

Destination: Choose the production option, as shown in the following
screenshot:

Once you review the settings, click on the OK button of the preceding step. It will17.
take a few moments to swap the functions and a progress bar will appear, as
shown in the following screenshot:

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[141]

After a minute or two, the staging and production slots get swapped. Let's review18.
the run.csx script files of the production:

If you don't see any changes, click on the refresh button of the function app, as19.
shown in the following screenshot:

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[142]

Be cautious that the Application settings and Database Connection Strings are20.
marked as Slot Setting (slot-specific). Otherwise, Application settings and
Database Connection Strings will also get swapped, which could cause
unexpected behavior. You can mark any of these settings from Platform features,
as shown in the following figure:

Clicking on the Application settings will take you to the following blade, where21.
you can mark any setting as a Slot setting:

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[143]

All the functions taken in the recipe are HTTP triggers; note that you can
have any kind of triggers in the function app. The deployment slots are
not limited to HTTP triggers.

You can have multiple slots for each of your function apps. The following
are few of the examples:

Alpha
Beta
Staging

You need to have all the Azure Functions in each of the slots that you would like to swap
with your production function app:

Slots are specific to the function app but not to the individual function.
Once you enable the slots features, all the keys will be regenerated, including the
master. Be cautious if you have already shared the keys of the functions with
third parties. If you have already shared them and enabled the slots, all the
existing integrations with the old keys wouldn't work.

In general, if you are using App Services and would like to create deployment slots, you
need to have your App Service plan in either one of the Standard or Premium tiers.
However, you can create slots for the function app even if it is in Consumption (or
dynamic) plans.

There's more
If you try to create a slot without enabling the feature, you will see something similar to
what is shown in the following screenshot:

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[144]

Load testing Azure Functions using VSTS
Every application needs to perform well in terms of performance. It's everyone's
responsibility within the team that the application is performing well. In this recipe, you
will learn how to create a load on the Azure Functions using the load test tool provided by
VSTS. This recipe will also help you understand how the auto-scaling of instances works in
the serverless environment without the developers or architect worrying about the
instances that are responsible for serving the requests.

Getting ready
Create a VSTS account at https:/ /www. visualstudio. com/ . We will be using the load test
tool of VSTS to create URL-based load testing.

How to do it...
Create a new HTTP trigger named LoadTestHttpTrigger with Authorization1.
Level set to Anonymous.
Replace the default code with the following in run.csx:2.

 using System.Net;
 public static async Task<HttpResponseMessage>
 Run(HttpRequestMessage req, TraceWriter log)
 {
 System.Threading.Thread.Sleep(2000);
 return req.CreateResponse(HttpStatusCode.OK, "Hello ");
 }

The preceding code is self-explainable. In order to make the load test interesting,3.
let's simulate some processing load by adding a wait time of two seconds using
System.Threading.Thread.Sleep(2000);.
Copy the function URL by clicking on the </> Get function URL link available on4.
the right-hand side of the run.csx code editor, as shown in the following
screenshot:

https://www.visualstudio.com/
https://www.visualstudio.com/
https://www.visualstudio.com/
https://www.visualstudio.com/
https://www.visualstudio.com/
https://www.visualstudio.com/
https://www.visualstudio.com/
https://www.visualstudio.com/
https://www.visualstudio.com/
https://www.visualstudio.com/

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[145]

Navigate to Load test tab of the VSTS account.5.
Click on New link and select URL based test , as shown in the following6.
screenshot:

In the Web Scenarios tab, provide a meaningful name for the load test, as shown7.
in the following screenshot:

Paste the HTTP trigger URL that you have copied in step 4 into the URL input8.
field, as shown in the following screenshot:

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[146]

Now, click on the Save button to save the load test:9.

The next step is to provide details about the load that we would like to create on10.
the Azure Function. As shown in the following screenshot, click on Settings and
provide the details about the load test that you would like depending on your
requirements:

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[147]

Click on Save once you provide all your details for the load test. Once you save11.
the test, the Run test button will be enabled, as shown in the following
screenshot:

Click on Run test to start the load test. As the run duration of our load test is 2012.
minutes, it would take 20 minutes to complete the load test. Once the load is
complete, VSTS provides us with the performance reports, shown as follows:

Summary Report: This provides us the average response time of the
HTTP trigger for the load of 1K users.

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[148]

Performance reports: The following performance report provides us
with insights of how the application is behaving as we keep the load
growing:

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[149]

There's more...
We can also look at how Azure scales out the instances automatically behind the scenes in
the Live Metrics Stream tab of Application Insights. The following screenshot shows the
instance IDs and the health of the virtual machines that are allocated automatically based
on the load on the Azure serverless architecture. You will learn how to integrate
Application Insights with Azure Functions in Chapter 6, Monitoring and Troubleshooting
Azure Serverless Services:

See also
The Monitoring Azure Functions using Application Insights recipe in Chapter 6,
Monitoring and Troubleshooting Azure Serverless Services

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[150]

Creating and testing Azure Function locally
using Azure CLI tools
Most of the recipes that you have learned so far have been created either using the browser
or using Visual Studio Integrated Development Environment (IDE).

Azure also provides us with tools that help developers who love working with the
command line. These tools allow us to create Azure resources right from the command line
with simple commands. In this recipe, you will learn how to create a new function app and
also understand how to create a function and deploy it to the Azure Cloud right from the
command line.

Getting ready
Install Node.js from https:/ /nodejs. org/ en/download/ .1.
Once you install Node.js, you need to install the Azure Function Core Tools npm2.
package. Navigate to your Command Prompt and run the following command:

 npm i -g azure-functions-core-tools

As shown in the following screenshot, the tools related to Azure Functions will3.
get installed:

https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[151]

How to do it...
Once the Azure Functions Core Tools are ready, run the following command to1.
create a new function app:

 func init

You will get the following output after executing the preceding command:

Just ignore the unable to find the git in the path error, as we
are not going to use Git in the recipe.

Run the following command to create a new HTTP trigger function within the2.
new function app that we have created:

 func new

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[152]

You will get the following output after executing the preceding command:

You will be prompted to choose the language in which you would like to code.3.
As shown in the preceding screenshot, I have chosen C#. Once you are ready,
press Enter to go to the next step.
You will now be prompted to select the function template. For this recipe, I have4.
chosen HttpTrigger, as shown in the following screenshot. Choose
HttpTrigger by using the down arrow. You can choose the Azure Function type
based on your requirement. You can navigate between the options using the
up/down arrows available on your keyboard:

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[153]

The next step is to provide a name to the Azure Function that you are creating.5.
Provide a meaningful name and press Enter, as shown in the following
screenshot:

You can use your favorite IDE to edit the Azure Function code. In this recipe, I6.
am using Visual Studio Code to open the HttpTrigger function, as shown in the
following screenshot:

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[154]

Let's test the Azure Function right from your local machine. For this, we need to7.
start the Azure Function host by running the following command:

 func host start

Once the host is started, you can copy the URL (which is highlighted in the8.
preceding screenshot) and test it in your browser along with a query string
parameter name, as shown in the following screenshot:

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[155]

Testing and validating Azure Function
responsiveness using Application Insights
Any application is useful for any business only if it up and running. Applications might go
down for multiple reasons, and the following are a few of them:

Any hardware failures such as server crash, bad hard disk, or any other
hardware, or even an entire data center might go down, which might be very rare
There might be any software errors because of bad code or a deployment error
The site might receive unexpected traffic and the servers may not be capable of
handling the traffic
There might be cases where your application is accessible from one country but
not the others

It would be really helpful if we can get any notification if our site is not available or not
responding to the user requests. Azure provides a few tools for us to help in alerting if the
website is not responding or is down. One of them is Application Insights. You will learn
how to configure Application Insights that ping our Azure Function app for every minute
and alert us if the Function is not responding.

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[156]

Getting ready
Navigate to Azure Management portal, click on New , and then select1.
Monitoring + Management. Choose Application Insights and provide all the
required details, as shown in the following screenshot:

Once you review, click on the Create button to create the Application Insights.2.

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[157]

Navigate to your function app's Overview blade and grab the function app URL,3.
as shown in the following screenshot:

How to do it...
Navigate to the Availability blade and click on Add test button, as shown in the1.
following screenshot:

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[158]

In the Create test blade, enter a meaningful name for your requirement and paste2.
the function app URL that you have noted down in the URL field of the Create
test blade. In the Alerts blade, provide a valid email address in the Send alert
emails to these email addresses: field to which an alert should be sent if the
function is not available or not responding:

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[159]

Click on OK in the Alerts blade and then click on the Create button of the Create3.
test blade to create the test, as shown in the following screenshot in the All
availability tests section:

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[160]

In order to test the functionality of this alert, let's stop the function app by4.
clicking on the Stop button available in the Overview tab of the function app, as
shown in the following screenshot:

When the function app was stopped, Application Insights will try to access the5.
function URL using the ping test and the response code will not be 200 as the
app was stopped, which means the test failed and a notification was sent to the
configured email, as shown in the following screenshot:

Exploring Testing Tools for the Validation of Azure Functions Chapter 5

[161]

How it works...
We have created an Availability test where our function app will be pinged once every
five minutes from a maximum of five different locations across the world. You can
configure them in the Test Location tab of the Create test blade while creating the test. The
default criterion of the ping is to check whether the response code of the URL is 200. If the
response code is not 200, then the test has failed, and an alert is sent to the configurable
email address.

There's more...
You can use multi-step web test (using the Test Type option in the Create test blade) if you
would like to test a page or functionality that requires navigating to multiple pages.

6
Monitoring and Troubleshooting

Azure Serverless Services
In this chapter, you will learn the following:

Monitoring your Azure Functions
Monitoring Azure Functions using Application Insights
Pushing custom telemetry details to analytics of Application Insights
Sending application telemetry details via email
Integrating real-time Application Insights monitoring data with Power BI using
Azure Functions

Introduction
Completing the development of the project and making the application live is not the end of
the story. We need to continuously monitor the application, analyze the performance, and
review the logs to understand whether there are any issues that end users are facing. Azure
provides us with multiple tools to achieve all the monitoring requirements right from the
development stage and the maintenance stage of the application.

In this chapter, you will learn how to utilize this information and take necessary actions
based on the information available.

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[163]

Monitoring your Azure Functions
In this recipe, you will learn the following:

Individual function logs:
Reviewing the logs in the Logs section located below the code
editor of the Azure Functions in the Azure Management portal
Reviewing the execution log in the Monitor tab of the Azure
Function

All functions of a given function app:
Log streaming

Getting ready
Navigate to the Platform features of the function app and click on Diagnostic1.
Logs blade, as shown in the following screenshot:

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[164]

In the Logs blade, enable Application Logging (Filesystem) by clicking on the2.
On button, as shown in the following screenshot if it is Off. And then, click on
Save to save the changes:

How to do it...
Navigate to the code editor in the Azure Management portal of any Azure1.
Function. You will notice a bar at the bottom with the title Logs. Click on the bar
to expand it. After expanding, it should look like what is shown in the following
screenshot, where you can view all the logs that show the events that happen
after you open it:

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[165]

Let's navigate to Monitor tab to view all the past events that happened with the2.
Azure Function. The following is the list of events that happened in the
RegisterUser function that we created in our previous chapters:

Click on any of the log items for which the Status is a success. As shown in the3.
following screenshot, you will see all the request and binding details of the
particular event that happened with this function:

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[166]

Let's now click on any of the log item for which the status column indicates4.
failure. You will see the request and binding details along with a special field
named Failure that provides details about the reason for the failure. Detailed
error details are available in the Logs section of the following screenshot:

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[167]

In order to view live data of the events, navigate to the Platform features tab of5.
the function app and click on Log streaming , shown as follows:

Clicking on the Log streaming link in the preceding screenshot will take you to6.
the Streaming logs window, where you can view all the events happening in all
the functions of the selected function app:

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[168]

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[169]

There's more...
Each function event is logged in an Azure Storage Table service. Every month, a table is
created with the name AzureWebJobsHostLogs<Year><Month>.

As part of troubleshooting any error, if you would like to get more details of any error, you
first get the _context field available in the Invocation details section and look up that data
in RowKey of the AzureWebJobsHostLogs table.

Monitoring Azure Functions using
Application Insights
Application Insights (AI) is an application performance management service that helps us
in monitoring the performance of an application hosted anywhere. Once you integrate AI
into your application, it will start sending telemetry data to your AI account hosted on the
cloud. In this recipe, you will learn how simple is it to integrate Azure Functions with AI

Getting ready
We created an AI account in the Testing and validating Azure Function responsiveness using
Application Insights recipe of Chapter 5, Exploring Testing Tools for the Validation of Azure
Functions. Create one, if not created already, using the following steps:

Navigate to Azure Management portal, click on New, and then select Monitoring1.
+ Management.
Choose Application Insights and provide all the required details. In case if you2.
have already created the Application Insights in previous recipe, you can ignore
this step.

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[170]

How to do it...
Once the AI account is created, navigate to the Overview tab and grab1.
Instrumentation Key , as shown in the following screenshot:

Navigate to Function Apps for which you would like to enable monitoring and2.
go to Application settings , as shown in the following screenshot:

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[171]

Add a new key with the name APPINSIGHTS_INSTRUMENTATIONKEY and3.
provide the instrumentation key that you have copied from the AI account,
shown as follows, and click on Save to save the changes:

If everything goes fine, you will see the Application Insights link in the4.
Configured features section, as shown in the following screenshot:

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[172]

That's it; you can start utilizing all the features of AI to monitor the performance5.
of your Azure Functions. Open Application Insights and the RegisterUser
function in two different tabs to test how Live Metrics Stream works:

Open Application Insights and click on Live Metrics Stream in the1.
first tab of your browser, as shown in the following screenshot:

Open the RegisterUser function in another tab and run a few tests.2.

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[173]

After you have completed the tests, go to the tab that has AI. You should see the6.
live traffic coming to your function app, as shown in the following screenshot:

How it works...
We have created an AI account. Once you integrate AI's Instrumentation Key with the
Azure Function, the runtime will take care of sending the telemetry data asynchronously to
your AI account hosted on Azure.

There's more ...
In Live Metrics Stream, you can also view all the instances along with some other data,
such as the number of requests per second handled by your instances.

Pushing custom telemetry details to
analytics of Application Insights
We have been asked by our customers to provide analytic reports of a derived metric with
in AI. So, what is a derived metric? Well, by default, AI provides you with many insights
about the metrics like requests, errors, exceptions, and so on. You can run queries on the
information that AI provide using AI - Analytics query language, say, if you would like to
understand the number of requests that are coming to a website for every hour a new
metric derived from the out of the box metric.

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[174]

In this context, requests per hour is a derived metric) and if you would like to build a
new report within AI then you need to feed AI about the new derived metric on a regular
basis. Once you feed the required data regularly, AI will take care of providing the reports
for our analysis.

We will be using Azure Functions that feed the AI with a derived metric named requests
per hour:

For this example, we will develop a query using Analytics query language for the request
per hour derived metric. You can make changes to the query to generate other derived
metrics for your requirement, say, requests per hour for my campaign or something similar to
that.

You can learn more about Analytics query language at https:/ /docs.
microsoft. com/ en- us/ azure/ application- insights/ app- insights-
analytics- reference.

https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics-reference

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[175]

Getting ready
Create a new AI account if you don't have one already.
Make sure you have a running application that integrates with the AI. You can
learn how to integrate your application with AI at https:/ /docs. microsoft.
com/en- us/ azure/ application- insights/ app-insights- asp- net.

How to do it...
We will perform the following steps to pushing custom telemetry details to analytics of
Application Insights.

Creating AI function
Create a new function template by choosing Monitoring in the Scenario drop-1.
down, as shown in the following screenshot. You can also search for scheduled
analytics to easily find the template.

https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[176]

Now, click on C# in the preceding screenshot and provide the name along with2.
schedule frequency in which the function need to run:

As shown in the preceding screenshot, click on the Create button to create the3.
function.

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[177]

Configuring access keys
Now, navigate to AI's Overview blade, as shown, and copy the Instrumentation1.
Key. We would be using the Instrumentation Key to create an application
setting named AI_IKEY in the function app:

Navigate to API Access blade, copy the Application ID. We would be using this2.
Application Id to create a new app setting with the name AI_APP_ID in the
function app:

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[178]

We also need to create a new API key. As shown in the preceding step, click on3.
the Create API key button to generate the new API key, as shown in the
following screenshot. Provide a meaningful name, check the Read telemetry
data, and click on Generate key:

Once the Generate key is clicked on, you can view and copy the key, as shown in4.
the following screenshot. We would be using this to create new app setting with
the name AI_APP_KEY in our function app:

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[179]

Now, Create all the three App setting keys in the Function App, as shown in the5.
following screenshot. All these three keys will be used in our Azure Function
named as FeedAIwithCustomDerivedMetric.

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[180]

Integrating and testing AI query
Now, it's time to develop the query that provides us with the derived metric1.
value requests per hour. Navigate to the AI Overview blade and click on the
Analytics button, as shown in the following screenshot:

You will be taken to the analytics website, as shown in the following screenshot.2.
Click on the new tab icon where we write the query to pull the required data to
derive our custom metric:

Write the following query in the new query tab. You can write your own query as3.
per your requirements. Make sure that the query returns a scalar value:

 requests
 | where timestamp > now(-1h)
 | summarize count()

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[181]

Once you are done with your query, run it by clicking on the Go button to see the4.
count of records, as shown in the following screenshot:

We are now ready with the required AI query. Let's integrate the query with our5.
FeedAIwithCustomDerivedMetrics function. Navigate to the Azure Function
code editor and make the following changes:

Provide a meaningful name for our derived metric, in this case,1.
Requests per hour.
Replace the default query with the one that we have developed.2.
Save the changes by clicking on the Save button:3.

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[182]

Let's do a quick test to see whether you have configured all three app settings6.
and the query correctly. Navigate to the Integrate tab and change the run
frequency to one minute, as shown in the following screenshot:

Now, let's navigate to the Monitor tab and see whether everything is working7.
fine. If there are any problem, you will see a X mark in the Status column. View
the error in the Logs section in the Monitor tab by clicking on the Invocation log
entry:

Once you make sure that the function is running smoothly, revert the Schedule8.
frequency to one hour.

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[183]

Configuring the custom derived metric report
Navigate to the AI's Overview tab and click on Metrics Explorer, as shown in the1.
following screenshot:

Metrics Explorer is where you will find all your analytics related to different2.
metrics. In Metrics Explorer, click on the Edit button located in any report to
configure our custom metric, as shown in the following screenshot:

After clicking on the Edit button, you will be taken to the Chart details blade,3.
where you can configure your custom metric and all other details related to the
chart. In the Metrics section, search for your custom metric name like I did, as
shown in the following screenshot, and click on it:

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[184]

If you don't see your custom metric under Custom section, as shown in
the preceding screenshot, change the time range values as per the time
you ran your Azure Function.

That's it; the report will start showing the data as per your configuration. This is4.
what it looks like as soon as you check your Metric:

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[185]

How it works...
This is how the entire process works:

We have created the Azure Function using the default Delete repeated word
We have configured the following keys in the Application Settings of the Azure
Function app:

AI's Instrumentation Key
The application ID
The API access key

The Azure Function runtime will automatically consume the AI API, run the
custom query to retrieve the required metrics, and perform the required
operations of feeding the derived telemetry data to AI.
Once everything in the Azure Function is configured, we develop a simple query
that pulls the request count of the last 1 hour and feed ir to the AI as a custom
derived metric. This process repeats every 1 hour.
Later, we configure a new report using Metrics Explorer of AI with our custom
derived metric.

See also
The Integrating Azure Functions using Application Insights recipe
The Sending application telemetry details via email recipe

Sending application telemetry details via
email
One of the post-live activities of your application would be to receive a notification email
about the details of the health, errors, response time, and so on at least once a day.

Azure Function provide us with the ability to get all the basic details using a function
template with the code that's is responsible for retrieving all the required values from the AI
and the plumbing code of framing the email body and sending the email using SendGrid.
We will look at how to do that in this recipe.

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[186]

Getting ready
Create a new SendGrid account if you have not yet created one and get the1.
SendGrid API key.
Create a new AI account if you don't have one already.2.
Make sure you have a running application that integrates with the AI.3.

You can learn how to integrate your application with AI at https:/ /docs.
microsoft. com/ en- us/ azure/ application- insights/ app- insights- asp-
net.

How to do it...
Create a new function by choosing Monitoring in the Scenario dropdown and1.
select the AppInsights Scheduled Digest - C# template, as shown in the
following screenshot:

https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net.

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[187]

Once you select the template, you will be prompted to provide the name of the2.
function, scheduled frequency, and SendGrid API Key for the SendGrid output
binding, as shown in the following screenshot:

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[188]

Once you review all the details, click on the Create button of the previous step to3.
create the new Azure Function. The template creates all the code that is required
to query the data from AI and send an email to the person mentioned in the To
address of the preceding screenshot.

Make sure that you follow the steps mentioned in Configuring access keys
section of the Pushing custom telemetry details to analytics of Application
Insights recipe to configure these access keys: AI Instrumentation Key, the
application ID, and the API access key.

Navigate to the run.csx function and change the app name to your application4.
name, as shown in the following screenshot:

If you have configured all the setting properly, you will start receiving an email5.
based on the timer settings.
Let's do a quick test run by clicking on the Run button available above the code6.
editor, as shown in the following screenshot:

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[189]

This is the screenshot of the email that I received after clicking on the Run button7.
of the preceding screenshot:

How it works...
The Azure Function uses the AI API to run all the AI analytics queries, retrieves all the
results, frames the email body with all the details, and invokes the SendGrid API to send an
email to the configured email account.

There's more...
Azure templates provide the default code that has a few queries that are in general useful in
monitoring the application health. If you have any specific requirement of getting
notification alerts, go ahead and add new queries to the GetQueryString method. In order
to incorporate the new values, you would also need to change the DigestResult class and
the GetHtmlContentValue function.

See also
The Sending an email notification to the administrator of the website using the SendGrid
service recipe of Chapter 2, Working with Notifications Using SendGrid and Twilio
Services

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[190]

Integrating real-time AI monitoring data with
Power BI using Azure Functions
Sometimes, you would need to view some real-time data of your application availability or
any information related to your application health on a custom website. Retrieving the
information for the AI and displaying it in a custom report would be a tedious job as you
need to develop a separate website and build, test, and host it somewhere.

In this recipe, you will learn how easy is to view real-time health information of the
application by integrating AI and Power BI. We will be leveraging Power BI capabilities for
live streaming of the data and Azure timer functions to continuous feed health information
to Power BI. This is a high-level diagram of what we will be doing in the rest of the recipe:

Please make sure that you follow the steps mentioned in Configuring access
keys section of the Pushing custom telemetry details to analytics of Application
Insights recipe to configure these access keys: AI Instrumentation Key, the
application ID, and the API access key.

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[191]

Getting ready
Create a Power BI account at https:/ /powerbi. microsoft. com/ en-us/ .1.
Create a new AI account if you don't have one already.2.
Make sure that you have a running application that integrates with the AI. You3.
can learn how to integrate your application with AI at https:/ /docs. microsoft.
com/en- us/ azure/ application- insights/ app-insights- asp- net.

How to do it...
We will perform the following steps to integrate AI and Power BI.

Configuring Power BI with dashboard, dataset, and
push URI

If you are using the Power BI portal for the first time, you might have to click on1.
Skip for now on the welcome page, as shown in the following screenshot:

https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-asp-net

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[192]

The next step is to create a streaming dataset by clicking on Create and then2.
choosing Streaming dataset, as shown in the following screenshot:

In the New streaming dataset step, select API and click on the Next button, as3.
shown in the following screenshot:

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[193]

In the next step, you need to create the fields of the streaming dataset. Provide a4.
meaningful name to the dataset and provide the values that you would like to
push to Power BI. For this recipe, I have created a dataset with just one field
named RequestsPerSecond of type Number and clicked on Create , as shown
in the following screenshot:

Once you create the dataset, you will be prompted with a Push URL as shown in5.
the following screenshot. You will be using this Push URL in the Azure
Functions to push the RequestsPerSecond data every 1 second (or depending
on your requirements) with the actual value of request per second. Click on
Done.

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[194]

The next step is to create a dashboard along with a tile in it. Let's create a new6.
dashboard by clicking on Create and choosing Dashboard , as shown in the
following screenshot:

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[195]

In the Create dashboard popup, provide a meaningful name and click on Create,7.
as shown in the following screenshot, to create an empty dashboard:

In the empty dashboard, click on the Add tile button to create a new tile. Clicking8.
on Add tile will open a new popup, where you can select the data source from
which the tile should be populated:

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[196]

Select CUSTOM STREAMING DATA and click on Next, as shown in the9.
preceding screenshot. In the following step, select the Requests dataset and click
on the Next button:

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[197]

The next step is to choose Visualization type (it is Card in this case) and select10.
the fields from the data source, as shown in the following screenshot:

The final step is to provide a name to your tile. I have provided requests per11.
second. The name might not make sense in this case. But you are free to provide
any name as per your requirements.

Creating Azure AI real-time Power BI - C# function
To create Azure AI real-time Power BI using the C# function, complete the following steps:

Navigate to Azure Functions and create a new function using the following1.
template:

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[198]

Click on C# in the preceding screenshot and provide the Name and click on2.
Create button as shown in the following screenshot:

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[199]

Replace the default code with the following code. Make sure that you configure3.
the right value for which the analytics query should pull the data. In my case, I
have provided five minutes (5m) in the following code:

 #r "Newtonsoft.Json"
 using System.Configuration;
 using System.Text;
 using Newtonsoft.Json.Linq;
 private const string AppInsightsApi =
 "https://api.applicationinsights.io/beta/apps";
 private const string RealTimePushURL = "PastethePushURLhere";
 private static readonly string AiAppId =
 ConfigurationManager.AppSettings["AI_APP_ID"];
 private static readonly string AiAppKey =
 ConfigurationManager.AppSettings["AI_APP_KEY"];

 public static async Task Run(TimerInfo myTimer, TraceWriter
 log)
 {
 if (myTimer.IsPastDue)
 {
 log.Warning($"[Warning]: Timer is running late! Last ran
 at: {myTimer.ScheduleStatus.Last}");
 }
 await RealTimeFeedRun(
 query: @"
 requests
 | where timestamp > ago(5m)
 | summarize passed = countif(success == true),
 total = count()
 | project passed
 ",
 log: log
);
 log.Info($"Executing real-time Power BI run at:
 {DateTime.Now}");
 }

 private static async Task RealTimeFeedRun(string query,
 TraceWriter log)
 {
 log.Info($"Feeding Data to Power BI has started at:
 {DateTime.Now}");
 string requestId = Guid.NewGuid().ToString();
 using (var httpClient = new HttpClient())
 {
 httpClient.DefaultRequestHeaders.Add("x-api-key",

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[200]

 AiAppKey);
 httpClient.DefaultRequestHeaders.Add("x-ms-app",
 "FunctionTemplate");
 httpClient.DefaultRequestHeaders.Add("x-ms-client-
 request-id", requestId);
 string apiPath = $"{AppInsightsApi}/{AiAppId}/query?
 clientId={requestId}×pan=P1D&query={query}";
 using (var httpResponse = await
 httpClient.GetAsync(apiPath))
 {
 httpResponse.EnsureSuccessStatusCode();
 var resultJson = await
 httpResponse.Content.ReadAsAsync<JToken>();
 double result;
 if (!double.TryParse(resultJson.SelectToken
 ("Tables[0].Rows[0][0]")?.ToString(), out result))
 {
 throw new FormatException("Query must result in a
 single metric number. Try it on Analytics before
 scheduling.");
 }
 string postData = $"[{{ "requests": "{result}"
 }}]";
 log.Verbose($"[Verbose]: Sending data: {postData}");
 using (var response = await
 httpClient.PostAsync(RealTimePushURL, new
 ByteArrayContent(Encoding.UTF8.GetBytes(postData))))
 {
 log.Verbose($"[Verbose]: Data sent with response:
 {response.StatusCode}");
 }
 }
 }
 }

The preceding code runs an AI analytics query that pulls data for the last five4.
minutes (requests) and pushes the data to Power BI push URL. This process
repeats continuously based on the timer frequency that you have configured.

Monitoring and Troubleshooting Azure Serverless Services Chapter 6

[201]

This is a screenshot that has a sequence of pictures that show the real-time data:5.

How it works...
We have created the following in the speific order:

A streaming dataset in the Power BI application
A dashboard and new tile that can display the values available in the streaming
dataset
A new Azure Function that runs an AI analytics query and feeds data to the
Power BI using the push URL of the dataset
Once everything is done, we can view the real-time data in the Power BI's tile of
the dashboard

There's more...
Power BI allows us to create real-time data in the reports in multiple ways. In this
recipe, you learned how to create real-time reports using steaming dataset. The
other ways are the Push dataset and the PubNub streaming dataset. You can
learn more about all three approaches at https:/ /powerbi. microsoft. com/ en-
us/documentation/ powerbi- service- real- time- streaming/ .
Be very careful when you would like to have the real-time application's health
data. The AI API has a rate limit. Take a look at https:/ /dev.
applicationinsights. io/ documentation/ Authorization/ Rate- limits to
understand more about API limits.

https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-real-time-streaming/
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits
https://dev.applicationinsights.io/documentation/Authorization/Rate-limits

7
Code Reusability and

Refactoring the Code in Azure
Functions

In this chapter, you will learn the following recipes:

Creating a common code repository for better manageability within a function
app
Shared code across Azure Functions using class libraries
Azure Functions and precompiled assemblies
Migrating legacy C# application classes to Azure Functions using PowerShell
Using strongly typed classes in Azure Functions

Introduction
For every business application, there might be some code that is reusable in different
modules. So, it's important that your code should reusable to save efforts of your
development time. In this chapter, we will learn how to created shared classes and use them
in the serverless functions. We will also learn how to migrate the existing background
applications into Azure Functions with minimum efforts.

Code Reusability and Refactoring the Code in Azure Functions Chapter 7

[203]

Creating a common code repository for
better manageability within a function app
In all our previous chapters, we wrote all the code in the run function. I did that to make
everything simple and focus more on conceptual stuff related to Azure Functions instead of
code architecture and all. Now, it's time to discuss the features that Azure Functions
provide related to code architecture and re-usability. Most of the recipes covered in this
chapter talk about them.

In our RegisterUser function, we could refactor the code into multiple classes and
functions. However, we will not focus on refactoring all the code, but we will just pull out
the code related to sending the emails.

In your application, make sure you use the architectural design principles
and practices based on your requirements.

Let's start refactoring the code.

How to do it...
Create a new ManualTrigger - C# template, as shown in the following1.
screenshot, with the name SharedClasses:

Code Reusability and Refactoring the Code in Azure Functions Chapter 7

[204]

Click on C# link shown in the preceding screenshot. It opens up a new popup2.
shown as follows:

Now, click on Create button to create the new Manual trigger function.3.

Once the trigger is created, navigate to the View files tab and add a new file4.
named Helper.csx by clicking on the Add button, as shown in the following
screenshot:

Copy the following code and paste in the new Helper.csx file. The following5.
code accepts all the information required for sending an email using SendGrid:

 #r "SendGrid"
 using System.Net;
 using SendGrid.Helpers.Mail;
 public static class Helper

Code Reusability and Refactoring the Code in Azure Functions Chapter 7

[205]

 {
 public static Mail SendMail(string strSubject, string
 strBody,string strFromAddress,string strToAddress,string
 strAttachmentName)
 {
 Mail objMessage = new Mail();
 objMessage.Subject = strSubject;
 objMessage.From = new Email(strFromAddress);

 objMessage.AddContent(new Content("text/html",strBody));

 Personalization personalization = new Personalization();
 personalization.AddTo(new Email(strToAddress));
 objMessage.AddPersonalization(personalization);

 Attachment objAttachment = new Attachment();
 objAttachment.Content = System.Convert.ToBase64String
 (System.Text.Encoding.UTF8.GetBytes(strBody));
 objAttachment.Filename = strAttachmentName;
 objMessage.AddAttachment(objAttachment);
 return objMessage;
 }
 }

Now, let's make the changes to the Run method of the RegisterUser function6.
that can use the preceding SendMail shared method. This is the updated Run
method that uses the SendMail method of SharedClasses:

 #r "Microsoft.WindowsAzure.Storage"
 #r "Twilio.Api"
 #r "SendGrid"

 #load "../SharedClasses/Helper.csx"

 using System.Net;
 using SendGrid.Helpers.Mail;
 using Microsoft.WindowsAzure.Storage.Table;
 using Newtonsoft.Json;
 using Twilio;
 using Microsoft.Azure.WebJobs.Host.Bindings.Runtime;

 public static void Run(HttpRequestMessage req,
 TraceWriter log,
 CloudTable objUserProfileTable,
 out string objUserProfileQueueItem,
 out Mail message,
 IBinder binder,

Code Reusability and Refactoring the Code in Azure Functions Chapter 7

[206]

 out SMSMessage objsmsmessage
)
 {
 var inputs = req.Content.ReadAsStringAsync().Result;
 dynamic inputJson = JsonConvert.DeserializeObject<dynamic>
 (inputs);
 objUserProfileQueueItem = inputJson.ProfilePicUrl;
 string firstname= inputJson.firstname;
 string lastname=inputJson.lastname;
 string email = inputJson.email;
 string profilePicUrl = inputJson.ProfilePicUrl;
 UserProfile objUserProfile = new UserProfile(firstname,
 lastname,profilePicUrl,email);
 TableOperation objTblOperationInsert = TableOperation.Insert
 (objUserProfile);
 TableResult objTableResult = objUserProfileTable.Execute
 (objTblOperationInsert);
 UserProfile objInsertedUser = (UserProfile)
 objTableResult.Result;

 string strFromEmailAddress = "donotreply@example.com";
 string strSubject = "New User got registered successfully.";
 string emailContent = "Thank you " + firstname + " " +
 lastname +" for your registration.

" +
 "Below are the details that you have provided us

"+
 "First name: " + firstname + "
" +
 "Last name: " + lastname + "
" +
 "Email Address: " + email + "
" +
 "Profile Url: " + profilePicUrl + "

" +
 "Best Regards," + "
" + "Website Team";
 string strAttachmentName = firstname + "_" + lastname +
 ".log";

 message = Helper.SendMail(strSubject,emailContent,
 strFromEmailAddress,email,strAttachmentName);

 using (var emailLogBloboutput = binder.Bind<TextWriter>(new
 BlobAttribute($"userregistrationemaillogs/
 {objInsertedUser.RowKey}.log")))
 {
 emailLogBloboutput.WriteLine(emailContent);
 }
 objsmsmessage = new SMSMessage();
 objsmsmessage.Body = "Hello.. Thank you for getting
 registered.";
 }
 public class UserProfile : TableEntity
 {

Code Reusability and Refactoring the Code in Azure Functions Chapter 7

[207]

 public UserProfile(string firstname,string lastname, string
 profilePicUrl,string email)
 {
 this.PartitionKey = "p1";
 this.RowKey = Guid.NewGuid().ToString();;
 this.FirstName = firstname;
 this.LastName = lastname;
 this.ProfilePicUrl = profilePicUrl;
 this.Email = email;
 }
 public UserProfile() { }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string ProfilePicUrl {get; set;}
 public string Email { get; set; }
 }

How it works...
To create shared code and classes, we have taken a ManualTrigger - C# template and
created a new .csx file for our classes (in this case, Helper). Once the C# script (.csx) files
are ready, we can write the common code in those files based on our requirements.

After the shared classes are developed, we can use them in any of the Azure Functions
within the function app where these shared classes are located.

To consume the shared classes, we just need to use the #load directive to refer to the shared
classes using the relative path. In this case, we have used the #load
"../SharedClasses/Helper.csx" directive to refer to the classes located in the
Helper.csx file located in the SharedClasses folder.

There's more...
One of the limitations of these shared classes is that you cannot use the Helper class in
other Azure Function apps. We will look at how to overcome this limitation in a moment
using the class libraries in Visual Studio.

All the changes that you make to these shared classes should be reflected in the caller
functions automatically. If, by any chance, if you don't see these changes reflected in the
caller functions, navigate to the host.json file using App Service Editor. Typically, this
would happen if your script files are located in other directories.

Code Reusability and Refactoring the Code in Azure Functions Chapter 7

[208]

Navigate to the App Service Editor, which is available in Platform features under the
DEVELOPMENT TOOLS sections, as shown in the following screenshot:

Add the WatchDirectories attribute to the host.json file, as shown in the following
screenshot:

See also
The Shared code across Azure Functions using class libraries recipe

Code Reusability and Refactoring the Code in Azure Functions Chapter 7

[209]

Shared code across Azure Functions using
class libraries
You learned how to reuse a Helper method within the Azure Function app. However, you
cannot reuse the across other function apps or any other type of application such as Web
app, WPF Application, and so on. In this recipe, we will develop and create a new .dll file
and you will learn how to use the classes and its methods in the Azure Functions.

How to do it...
Create a new Class Library application using Visual Studio. I have used Visual1.
Studio 2017, as shown in the following screenshot:

Create a new class named EMailFormatter and paste the following code in the2.
new class file:

 namespace Utilities
 {

Code Reusability and Refactoring the Code in Azure Functions Chapter 7

[210]

 public static class EMailFormatter
 {
 public static string FrameBodyContent(string firstname,
 string lastname, string email, string profilePicUrl)
 {
 string strBody = "Thank you " + firstname + " " +
 lastname + " for your registration.

" +
 "Below are the details that you have provided us

" + "First name: " + firstname + "
" +
 "Last name: " + lastname + "
" + "Email
 Address: " + email + "
" + "Profile Url:
 " + profilePicUrl + "

" + "Best
 Regards," + "
" + "Website Team";
 return strBody;
 }
 }
 }

Change Build Configuration to Release and build the application to create the3.
.dll file, which will be used in our Azure Functions.
Navigate to App Service Editor of the function app and create a new bin folder,4.
by right-clicking in the empty area below the files located in WWWROOT, as
shown in the following screenshot:

Code Reusability and Refactoring the Code in Azure Functions Chapter 7

[211]

After clicking on the New Folder item in the preceding screenshot, a new textbox5.
will appear. Provide the name as bin, as shown in the following screenshot:

After creating the bin folder, right-click on the bin folder, as shown in the6.
following screenshot, and select Upload Files options to upload the .dll file
that we have created in Visual Studio:

This is how it looks after we upload the .dll file to the bin folder:7.

Code Reusability and Refactoring the Code in Azure Functions Chapter 7

[212]

Navigate to the Azure Function where you would like to use the shared method.8.
Let's navigate to the RegisterUser function and make the following changes:

Add a new #r directive, shown as follows, to the run.csx method of1.
the RegisterUser Azure Function. Note that .dll is required in this
case:

 #r "../bin/Utilities.dll"

Add a new namespace, shown as follows:2.

 using Utilities;

We are now ready to use the FrameBodyContent shared method in our Azure9.
Function. Now replace the existing code that frames the email body content with
the following code:

 string emailContent = EMailFormatter.FrameBodyContent(
 firstname,lastname,email,profilePicUrl);

How it works...
We have created a .dll file that contains the reusable code that can be used in1.
any of the Azure Functions that require the functionality available in the .dll
file.
Once the .dll file is ready, we create a bin folder in the function app and add2.
the .dll file to the bin folder.

Note that we have added the bin folder to the WWWROOT so that it is
available to all the Azure Functions available in the function app.

There's more...
Just in case you would like to use the shared code only in one function, then you need to
add the bin folder along with the .ddl file in the required Azure Function folder.

Code Reusability and Refactoring the Code in Azure Functions Chapter 7

[213]

Another major advantage of using class libraries it that it would improve
performance as they are already compiled and ready for execution.

See also
The Creating common code repository for better manageability within a function app recipe

Azure Functions and precompiled
assemblies
In all our Azure Functions that we have created so far, we have written our code in a
method named Run in the run.csx. However, there might be some scenarios where you
would like to have your own classes and functions run as a start up method hosted on the
Azure Functions. In this recipe, you will learn how to integrate your custom class and
methods as start ups.

Getting ready...
By default, all the Function apps that you create in VS 2017 are precompiled function. This
recipe is developed using VS 2015. Please make sure you install Visual Studio 2015 if you
don't have one installed already.

How to do it...
We need to follow the below steps to create and use the precompiled functions:

Create a class library using Visual Studio1.
Create a HTTP function and then make changes to the Function.json to2.
integrate the .ddl file created in the previous step.

Code Reusability and Refactoring the Code in Azure Functions Chapter 7

[214]

Creating a class library using Visual Studio
Create a new Class Library named PrecompiledFunctions using Visual1.
Studio. Make sure that you choose the latest .NET version framework.
Create a new class named MyFunction and paste the following code in the new2.
class file. It's nothing new; I just copied the code that gets by default when you
create a new HTTP trigger using C# language:

 using System.Net;
 using System.Linq;
 using System.Threading.Tasks;
 using System.Net.Http;

 namespace PreCompiledFunctionSample
 {
 public class MyFunction
 {
 public static async Task<HttpResponseMessage>
 MyRun(HttpRequestMessage req)
 {
 // parse query parameter
 string name = req.GetQueryNameValuePairs()
 .FirstOrDefault(q => string.Compare(q.Key, "name",
 true) == 0).Value;

 dynamic data = await
 req.Content.ReadAsAsync<object>();
 name = name ?? data?.name;
 return name == null
 ? req.CreateResponse(HttpStatusCode.BadRequest,
 "Please pass a name on the query string or in the
 request body") : req.CreateResponse
 (HttpStatusCode.OK, "Hello " + name);
 }
 }
 }

Run the following command in Package Manager Console:3.

 Install-Package Microsoft.Azure.WebJobs.Extensions -Version 2.0.0

Run the following command in Package Manager Console:4.

 Install-Package Microsoft.AspNet.WebApi.Client

Code Reusability and Refactoring the Code in Azure Functions Chapter 7

[215]

Creating a new HTTP trigger Azure Function
Navigate to your Azure Management portal and create an HTTP trigger Azure1.
Function named HttpTrigger-MyCompiled by selecting C# in the language
drop-down, as shown here:

Provide a meaningful name and configure Authorization Level to Anonymous.2.
Delete the default run.csx file.3.
Navigate to App Service Editor of the function app and go to the HttpTrigger-4.
MyCompiled folder, create a folder named bin, and upload the .dll file along
with any other dependencies, if any. In this recipe, we just have the .ddl file, as
shown in the following screenshot:

Code Reusability and Refactoring the Code in Azure Functions Chapter 7

[216]

Navigate to function.json in the Azure Function code editor file and replace5.
the default JSON with the following JSON and save it. Just in case you made
changes to your name space, class, or method names, make the changes are
according to the following function.json:

 {
 "scriptFile": "bin\MyPrecompiledFunctions.dll",
 "entryPoint": "PreCompiledFunctionSample.MyFunction.MyRun",
 "bindings": [
 {
 "authLevel": "anonymous",
 "name": "req",
 "type": "httpTrigger",
 "direction": "in"
 },
 {
 "name": "$return",
 "type": "http",
 "direction": "out"
 }
],
 "disabled": false
 }

Now, copy the function URL using the GET function URL link, which is available6.
just above the code editor and make a request to the HTTP trigger function using
the Postman tool:

Code Reusability and Refactoring the Code in Azure Functions Chapter 7

[217]

How it works...
These are the steps that we have followed in this recipe:

Create a class library using C# with the code that responds to HTTP requests and1.
send an HTTP response.
Create an assembly and uploaded it to the Azure Function.2.
To utilize the function named MyRun available in the assembly (.ddl), we need to3.
make the following changes to the Azure Function files:

Delete the default run.csx file.1.
Add the following to the function.json file:2.

scriptFile: This indicates the location of the .ddl file.
entryPoint: This indicates the function name that should
be called for every HTTP request to the Azure Function.

There's more...
Even after installing the two NuGet packages mentioned previously, if you get any syntax
errors, make sure that you also create a reference to System.Web.Http as shown in the
following screenshot then click on OK button:

Code Reusability and Refactoring the Code in Azure Functions Chapter 7

[218]

You should have all the following references:

See also
The Migrating legacy C# application classes to Azure Functions using PowerShell recipe

Code Reusability and Refactoring the Code in Azure Functions Chapter 7

[219]

Migrating legacy C# application classes to
Azure Functions using PowerShell
Currently, many business applications are being hosted in private clouds or on-premise
data centers. Many of them have started migrating their applications to Azure using various
methods. The following are a just a few methods of quick migration to Azure:

Lift and shift the legacy application to the Infrastructure as a service (IaaS)
environment: This method should be straight forward, as you have complete
control over the virtual machines that you would create. You could host all your
web applications, schedulers, databases, and so on without making any changes
to your application code. You can even install any third-party software's or
libraries. Though this option provides full control for your application, it would
be expensive in most of the cases as the background application might not be
running all the time.
Convert legacy applications to Platform as a service (PaaS)-compatible
environment: This method could be complex depending on how many
dependencies your applications have in other third-party libraries that are not
compatible with the Azure PaaS environment. You would need to make code
changes to your applications so that they are stateless and are not dependent on
any of the resources of the instances where they are hosted. This option is very
cost-effective as you just need to pay for the execution time of your applications.

In order to host your applications in Azure and utilize them to fullest
possible extent, your applications shouldn't be dependent on any of the
resources of the virtual machine instances on which they would be hosted.
For example, you should use Redis Cache to store all your user session
information instead of using In-Proc sessions.

In this recipe, we will look at one of the easiest ways of migrating your existing background
job applications developed using C# classes and console applications without making many
changes to the existing application code.

We will be using a timer trigger to run the job every 5 minutes. And we will use PowerShell
to invoke the .exe process of the console application.

Code Reusability and Refactoring the Code in Azure Functions Chapter 7

[220]

Getting ready
The code provided in the recipe works well with any of the previous versions of the Visual
Studio. I have used Visual Studio 2017 .

How to do it...
We will perform this recipe using the following steps:

Creating an application using Visual Studio
Create a new console application and name it BackgroundJob using Visual1.
Studio. Make sure that you choose the latest .NET version framework.
Create a new class called UserRegistration and replace the following code:2.

 using System;
 namespace BackgroundJob
 {
 class UserRegistration
 {
 public static void RegisterUser()
 {
 Console.WriteLine("Register User method of
 UserRegistration has been called.");
 }
 }
 }

Create a new class called OrderProcessing and replace the following code:3.

 using System;
 namespace BackgroundJob
 {
 class OrderProcessing
 {
 public static void ProcessOrder()
 {
 Console.WriteLine("Process Order method of
 OrderProcessing class has been called");
 }
 }
 }

Code Reusability and Refactoring the Code in Azure Functions Chapter 7

[221]

In the Program.cs file, replace the existing code with the following code:4.

 using System;
 namespace BackgroundJob
 {
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Main method execution has been
 started");
 Console.WriteLine
 ("======================================");
 UserRegistration.RegisterUser();
 OrderProcessing.ProcessOrder();
 Console.WriteLine
 ("======================================");
 Console.WriteLine("Main method execution has been
 completed");
 }
 }
 }

Build the application to create the .exe file. You can configure it to run in either5.
debug or release mode. It is recommended that you deploy .exe in the release
mode in your production environments.

Creating a new PowerShell Azure Function
Navigate to your Azure Management portal and create a TimerTrigger -1.
PowerShell Azure Function by selecting PowerShell in the Language dropdown,
as shown in the following screenshot:

Code Reusability and Refactoring the Code in Azure Functions Chapter 7

[222]

Provide a meaningful name and configure the function to run every 5 minutes by2.
setting the frequency in the Schedule field, as shown in the following screenshot:

Code Reusability and Refactoring the Code in Azure Functions Chapter 7

[223]

Navigate to App Service Editor of the function app and go to the3.
BackgroundJob folder, create a folder named bin, and upload the .exe file
along with any other dependencies if any. In this recipe, we have just the .exe
file, as shown in the following screenshot:

Once you have uploaded the .exe file, you can also view it in the View Files4.
section of the Azure Function, as shown in the following screenshot. You can
view the .exe file by clicking on the bin folder icon:

Navigate to the run.ps1 file and replace the default code with the following5.
code and save it:

 & "D:homesitewwwrootBackgroundJobbinBackgroundJob.exe"

Code Reusability and Refactoring the Code in Azure Functions Chapter 7

[224]

Click on the Run button to run a test to check whether it's working as expected.6.
In my case, clicking on the Run button has created the following log, which is
expected:

How it works...
In this recipe, we have created a simple application that has a single function in each of the
two classes that just print the message when it is called. Once the development of the
classes is complete, you can learn how to create a new Azure Function and integrate it with
the .exe file. In your real-work cases, you can also upload your .exe files along with any
other libraries to the Azure Function app folder and use them for your needs.

See also
The Azure Functions and precompiled assemblies recipe
The Shared code across Azure Functions using class libraries recipe

Using strongly typed classes in Azure
Functions
In our initial chapters, we developed an HTTP trigger named RegisterUser that acts as a
Web API that could be consumed by any application that's capable of making HTTP
requests. However, there might be some other requirements where you might have
different applications that create messages in a queue with the details required for creating
a user. For the sake of simplicity, we will be using Azure Storage Explorer to create a queue
message.

Code Reusability and Refactoring the Code in Azure Functions Chapter 7

[225]

In this recipe, we will look at how to get the details of the user from the queue using
strongly typed objects.

Getting ready
Before moving further perform the following steps:

Create a storage account named azurefunctionscookbook in your Azure1.
subscription.
Install Microsoft Azure Storage Explorer if you haven't installed it already.2.
Once storage explorer is created, connect to your Azure storage account.3.

How to do it...
Using the Azure Storage Explorer, create a queue named registeruserqueue in1.
the storage account named azurefunctionscookbook. We assume that all the
other applications would be creating messages in the registeruserqueue
queue.
Navigate to Azure Functions and create a new Azure Function using2.
QueueTrigger - C# and choose the queue that we have created, as shown in the
following screenshot:

Code Reusability and Refactoring the Code in Azure Functions Chapter 7

[226]

As shown in the following screenshot, provide the details of the Queue and click3.
on the Create button:

Replace the default code with the following code:4.

 using System;
 public static void Run(User myQueueItem, TraceWriter log)
 {
 log.Info($"A Message has been created for a new User");
 log.Info($"First name: {myQueueItem.firstname}");
 log.Info($"Last name: {myQueueItem.lastname}");
 log.Info($"email: {myQueueItem.email}");
 log.Info($"Profile Pic Url: {myQueueItem.ProfilePicUrl}");
 }
 public class User
 {
 public string firstname { get;set;}

Code Reusability and Refactoring the Code in Azure Functions Chapter 7

[227]

 public string lastname { get;set;}
 public string email { get;set;}
 public string ProfilePicUrl { get;set;}
 }

Navigate to Azure Storage Explorer and create a new message in5.
registeruserqueue, as shown in the following screenshot:

Click on OK to create the queue message and navigate back to the Azure Function5.
and look at the logs, as shown in the following screenshot:

Code Reusability and Refactoring the Code in Azure Functions Chapter 7

[228]

How it works...
We have developed a new Azure queue function that gets triggered when a new message
gets added to the queue. We have created a new queue message with all the details
required to create the user. You can further reuse the Azure Function code to pass the user
object (in this case, myQueueItem) to the database layer class that is capable of inserting the
data into database or any other persistent medium.

There's more...
In this recipe, the type of the queue message parameter that is accepted by the Run method
is User. The Azure Function runtime will take care of serializing the JSON message
available in the queue to the custom type, User in our case. If you would like to reuse the
User class, you can create a new user.csx file and refer to the class in any other Azure
Function using the #load directive.

See also
The Creating a common code repository for better manageability within a function app
recipe

8
Developing Reliable and

Durable Serverless Applications
Using Durable Functions

In this chapter, you will learn the following:

Configuring Durable Functions in the Azure Management portal
Creating a hello world Durable Function app
Testing and troubleshooting Durable Functions
Implementing multithreaded reliable applications using Durable Functions

Please note that the Durable Functions runtime is still in Preview. Microsoft Azure Function
team is working on providing more features. In case you face any issues, please feel free to
report the issue here: https:/ /github. com/ Azure/ azure- webjobs- sdk- script/ issues/ .

Introduction
When you are working on developing modern applications that need to be hosted on the
cloud, you need to make sure that the applications are stateless. Statelessness is an essential
factor for developing the cloud-aware applications. For example, you should avoid
persisting any data in the resource that is specific to any virtual machine (VM) instance
which is provisioned to any Azure Service (for example: App Service, API and so on). If you
do so, you cannot leverage few of the services such as the auto scaling functionality as the
provisioning of instances is dynamic. If you depend on any VM specific resources, you will
end up facing troubles with unexpected behaviors.

https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/
https://github.com/Azure/azure-webjobs-sdk-script/issues/

Developing Reliable and Durable Serverless Applications Using Durable
Functions Chapter 8

[230]

Having said that, the downside of the previously mentioned approach is that you end up
working on identifying ways of persisting data in different mediums depending on your
application architecture.

Azure has come up with a new way of handing statefulness in serverless architecture along
with other features such as durability and reliability in the form of Durable Functions.
Durable Functions is an extension to Azure Functions and it is in the very early stages of
development. By the time you will be reading this, there might be a lot of changes released
to the Durable Functions. Please do keep checking the official documentation available
at https://docs.microsoft. com/ en- us/ azure/ azure- functions/ durable- functions-
overview.

Configuring Durable Functions in the Azure
Management portal
Currently, there are no predefined templates available for creating Durable Functions.
Hopefully by the time you are reading this chapter, the Azure Management portal will have
the ability to create Durable Functions using the default function templates. If you find any
template on the portal for creating the Durable Functions, please feel free to skip this recipe.

Getting ready
Create a new function app named MyDurableFunction.

How to do it...
Once you create the Function app, please navigate to Application settings by1.
clicking on the Application settings link of the function app shown as follows:

https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-overview

Developing Reliable and Durable Serverless Applications Using Durable
Functions Chapter 8

[231]

Once you change the version to beta, you can see the option of creating the2.
Durable Functions in the Scenario: drop down as shown in the following
screenshot:

Create a new Durable Functions HTTP starter function by choosing Durable3.
Functions in the Scenario: dropdown as shown in the following screenshot:

Developing Reliable and Durable Serverless Applications Using Durable
Functions Chapter 8

[232]

Clicking on the C# button in the preceding step, a new tab will be opened as4.
shown in the following screenshot:

Developing Reliable and Durable Serverless Applications Using Durable
Functions Chapter 8

[233]

Click on the Install button of the preceding step to start installing the5.
DurableTask extensions. It would take around 10 minutes to install the
dependencies as shown in the following screenshot:

There's more...
Currently, the function template support for Durable Functions is in
Beta/Preview. So we have configured the Framework version as beta in the
Application Settings. Microsoft Azure team might come up with the required
templates for Durable Functions very soon.
Durable Functions is still in the Preview stage and it is not recommended to be
used in your production environment.
Currently, C# is the only language supported for developing the Durable
Functions.

Developing Reliable and Durable Serverless Applications Using Durable
Functions Chapter 8

[234]

See also
The Creating a hello world Durable Function app recipe
The Configuring Durable Functions in the Azure Management portal recipe
The Testing and troubleshooting Durable Functions recipe

Creating a hello world Durable Function app
Though the overall intention of this book is to have each recipe of every chapter solve at
least one business problem, this recipe however, doesn't solve any real-time domain
problems, but it provides a quick start guidance to the readers to understand more about
Durable Functions and its components along with the approach of developing Durable
Functions.

Getting ready
We will perform the following steps before moving ahead:

Please install Postman tool from https:/ /www. getpostman. com/ if you haven't
installed it yet.
Please read more about Orchestrator and Activity trigger bindings at https:/ /
docs.microsoft. com/ en- us/ azure/ azure- functions/ durable- functions-
bindings

How to do it...
In order to develop Durable Functions, we need to create the following three functions:

Orchestrator client: An Azure Function that can manage the Orchestrator
instances
Orchestrator function: The actual Orchestrator function allows the development
stateful workflows via code and can asynchronously call other Azure Functions
(which are called as Activity functions) and can even save the return values of
those functions into local variables
Activity functions: These are the functions which will be called by the
Orchestrator functions

https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/durable-functions-bindings

Developing Reliable and Durable Serverless Applications Using Durable
Functions Chapter 8

[235]

Creating HttpStart Function - the Orchestrator client
Create a new Durable Functions HTTP starter function by choosing Durable1.
Functions in the Scenario dropdown as shown in teh following screenshot:

Clicking on the C# link in the preceding screenshot opens a new tab shown as2.
follows. Let's create a new HTTP function named HttpStart in
the DurableFunctionApp function app:

Developing Reliable and Durable Serverless Applications Using Durable
Functions Chapter 8

[236]

Immediately after creating the function, you will be taken to the code editor.3.
Please replace the default code with the following code and click on the Save
button to save the changes:

 #r "Microsoft.Azure.WebJobs.Extensions.DurableTask"
 #r "Newtonsoft.Json"

 using System.Net;

 public static async Task<HttpResponseMessage> Run(
 HttpRequestMessage req,
 DurableOrchestrationClient starter,
 string functionName,
 TraceWriter log)
 {
 // Function input comes from the request content.
 dynamic eventData = await req.Content.ReadAsAsync<object>();
 string instanceId = await starter.StartNewAsync(functionName,
 eventData);

 log.Info($"Started orchestration with ID = '{instanceId}'.");

 return starter.CreateCheckStatusResponse(req, instanceId);
 }

Navigate to the Integrate tab and click on Advanced editor as shown in the4.
following screenshot:

Developing Reliable and Durable Serverless Applications Using Durable
Functions Chapter 8

[237]

In the Advanced editor, please check if you have following settings. If not,5.
replace the default code with the following code:

 {
 "bindings":
 [
 {
 "authLevel": "anonymous",
 "name": "req",
 "type": "httpTrigger",
 "direction": "in",
 "route": "orchestrators/{functionName}",
 "methods": [
 "post",
 "get"
]
 },
 {
 "name": "$return",
 "type": "http",
 "direction": "out"
 },
 {
 "name": "starter",
 "type": "orchestrationClient",
 "direction": "in"
 }
]
 }

The HttpStart function works like a gateway for invoking all the
functions in the function app. Any request you make using
the https://mydurablefunction.azurewebsites.net/api/orchest
rators/{functionName} format in the URL, will be received by this
HttpStart function and it will take care of executing the Orchestrator
function based on the parameter available in the route parameter
{functionName}. All this is possible with the route attribute in the
function.json of the HttpStart function.

Developing Reliable and Durable Serverless Applications Using Durable
Functions Chapter 8

[238]

Creating Orchestrator function
Let's create an Orchestrator Function by clicking on the C# in the Durable1.
Functions orchestrator template shown as follows:

Once you click on C# in the preceding step, you will be taken to the following tab2.
where you provide the name of the function. Once you provide the name, click
on Create button to create the Orchestrator function:

Developing Reliable and Durable Serverless Applications Using Durable
Functions Chapter 8

[239]

In the DurableFuncManager, replace the default code with the following code3.
and click on the Save button to save the changes:

 #r "Microsoft.Azure.WebJobs.Extensions.DurableTask"
 public static async Task<List<string>>
 Run(DurableOrchestrationContext context)
 {
 var outputs = new List<string>();
 outputs.Add(await context.CallActivityAsync<string>
 ("ConveyGreeting", "Welcome Cookbook Readers"));
 return outputs;
 }

In the Advanced editor of the Integrate tab, replace the default code with the4.
following code:

 {
 "bindings": [
 {
 "name": "context",
 "type": "orchestrationTrigger",
 "direction": "in"
 }
]
 }

Developing Reliable and Durable Serverless Applications Using Durable
Functions Chapter 8

[240]

Creating Activity function
Create a new function named ConveyGreeting using the Durable Functions1.
activity template shown as follows:

Replace the default code with the following code if it's not matching and click on2.
the Save button to save the changes:

 #r "Microsoft.Azure.WebJobs.Extensions.DurableTask"
 public static string Run(string name)
 {
 return $"Hello {name}!";
 }

In the Advanced editor of the Integrate tab, replace the default code with the3.
following code if it's not matching:

 {
 "bindings": [
 {
 "name": "name",
 "type": "activityTrigger",
 "direction": "in"
 }
]
 }

In this recipe, we have created an Orchestration client, an Orchestrator function, and
Activity function. We will learn how to test these in our next recipe.

Developing Reliable and Durable Serverless Applications Using Durable
Functions Chapter 8

[241]

How it works...
Let us take a look at the working of the recipe:

We first developed the Orchestrator client (in our case it is HttpStart) which is
capable of creating the Orchestrators using the StartNewAsync function of
the DurableOrchestrationClient class. This method creates a new
Orchestrator instance.
Secondly, we developed the Orchestrator Function which is the most crucial
piece of the Durable Functions. Following are few of the important core features
of the Orchestrator context:

It can invoke multiple Activity functions
It can save the output returned by an Activity function (say
ActFun1) and pass it to another Activity function (say ActFun2)
These Orchestrator functions are also capable of creating
checkpoints which saves the execution points so that in case if there
is any problem with the VMs then it can replace/resume
automatically

And lastly, we developed the Activity function where we write most of the
business logic. In our case, it's just returning a simple message.

There's more...
Currently, C# is the only language supported for developing the Durable
Functions.
Durable Functions is dependent on Durable Task framework. You can learn more
about the Durable Task Framework at https:/ /github. com/Azure/ durabletask

See also
The Configuring Durable Functions in the Azure Management portal recipe
The Testing and troubleshooting Durable Functions recipe
The Implementing multithreaded reliable application using Durable Functions recipe

https://github.com/Azure/durabletask
https://github.com/Azure/durabletask
https://github.com/Azure/durabletask
https://github.com/Azure/durabletask
https://github.com/Azure/durabletask
https://github.com/Azure/durabletask
https://github.com/Azure/durabletask
https://github.com/Azure/durabletask
https://github.com/Azure/durabletask
https://github.com/Azure/durabletask
https://github.com/Azure/durabletask

Developing Reliable and Durable Serverless Applications Using Durable
Functions Chapter 8

[242]

Testing and troubleshooting Durable
Functions
In all our previous chapters, we have discussed various ways of testing the Azure
Functions. We can test the Durable Functions with the same set of tools. However the
testing approach is entirely different because of its features and the way it works.

In this recipe, we will learn few of the essential things that one should be aware of while
working with Durable Functions.

Getting ready
Please install the following if you haven't installed them yet:

Postman tool from https:/ /www. getpostman. com/

Azure Storage Explorer from http:/ /storageexplorer. com

How to do it...
Navigate to the code editor of the HttpStart function and grab the URL by1.
clicking on the </>Get function URL and replace the {functionName} template
value with DurableFuncManager.
Let's make a POST request using Postman as shown in the following screenshot:2.

Once you click on the Send button you will get a response with the following:3.
Instance ID
URL for retrieving the status of the function
URL to send an event to the function
URL to terminate the request

https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/

Developing Reliable and Durable Serverless Applications Using Durable
Functions Chapter 8

[243]

Click on the statusQueryGetURi in the preceding step to view the status of the4.
function. Clicking on the link in the preceding step will open it in a new tab
within the Postman tool. Once the new tab is opened, click on the Send button to
get the actual output:

If everything goes well (as in my case) we can see the runtimeStatus as5.
Completed as shown in the preceding screenshot within the postman, you will
also get eight records in the Table storage where the execution history is stored as
shown in the following screenshot:

Developing Reliable and Durable Serverless Applications Using Durable
Functions Chapter 8

[244]

If something has gone wrong, you can see the error message in the result column6.
which tells you in which function the error has occurred, and then you need to
navigate to the Monitor tab of that function to see a detailed error of the same.

See also
The Creating a hello world Durable Function app recipe
The Configuring Durable Functions in the Azure Management portal recipe
The Implementing multithreaded reliable application using Durable Functions recipe

Implementing multithreaded reliable
applications using Durable Functions
I have worked in few of the applications where parallel execution is required to perform
some computing tasks. The main advantage of this approach is that you get the desired
output pretty quickly depending on the subthreads that you create. It could be achieved in
multiple ways using different technologies. However the challenge in these approaches is
that if something goes wrong in the middle of any of the subthread it's not easy to self-heal
and resume from where it was stopped. I'm sure many of you might have faced similar
problems in your application as it is a very common business case.

In this recipe, we will try to implement a simple way of executing a function in parallel with
multiple instances using the Durable Functions for the following scenario.

Assume that we have five customers (whose IDs are 1,2,3,4,5) who approached us to
generate huge number of barcodes (say around 50 thousand). It would take lot of time for
generating the barcodes as it would involve some image processing tasks. So one simple
way to quickly process the request is to use asynchronous programming by creating a
thread for each of the customer and executing the logic in parallel for each of them.

We will also simulate a simple use case to understand how the Durable Functions auto-heal
when the VM in which it is hosted would go down or restart.

Developing Reliable and Durable Serverless Applications Using Durable
Functions Chapter 8

[245]

Getting ready
Please install the following if you haven't installed them yet:

Postman tool from https:/ /www. getpostman. com/

Azure Storage Explorer from http:/ /storageexplorer. com/

How to do it...
In this recipe, we will create the following Azure Function triggers:

One Orchestrator function named GenerateBARCode
Two Activity trigger functions:

GetAllCustomers: This function just returns the array of
customer IDs. In your application, you would need to write your
business logic.
CreateBARCodeImagesPerCustomer: This function doesn't
actually create the barcode, however it just logs a message to the
console as our goal is to understand the features of Durable
Functions. For each customer, we will randomly generate a number
less than 50,000 and just iterate through it.

Creating Orchestrator function
Create a new Function named GenerateBARCode using the Durable Functions1.
Orchestrator template, replace the default code with the following code and click
on the Save button to save the changes:

 #r "Microsoft.Azure.WebJobs.Extensions.DurableTask"
 public static async Task<int> Run(DurableOrchestrationContext
 context)
 {
 int[] customers = await
 context.CallActivityAsync<int[]>("GetAllCustomers");

 var tasks = new Task<int>[customers.Length];
 for (int nCustomerIndex = 0; nCustomerIndex <
 customers.Length; nCustomerIndex++)
 {
 tasks[nCustomerIndex] =

https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/

Developing Reliable and Durable Serverless Applications Using Durable
Functions Chapter 8

[246]

 context.CallActivityAsync<int>
 ("CreateBARCodeImagesPerCustomer",
 customers[nCustomerIndex]);
 }
 await Task.WhenAll(tasks);
 int nTotalItems = tasks.Sum(item => item.Result);
 return nTotalItems;
 }

In the Advanced editor of the Integrate tab, replace the default code with the2.
following code:

 {
 "bindings": [
 {
 "name": "context",
 "type": "orchestrationTrigger",
 "direction": "in"
 }
],
 "disabled": false
 }

Creating Activity function GetAllCustomers
Create a new Function named GetAllCustomers using the Durable Functions1.
Activity template, replace the default code with the following code and click on
the Save button to save the changes:

 #r "Microsoft.Azure.WebJobs.Extensions.DurableTask"
 public static int[] Run(string name)
 {
 int[] customers = new int[]{1,2,3,4,5};
 return customers;
 }

Developing Reliable and Durable Serverless Applications Using Durable
Functions Chapter 8

[247]

In the Advanced editor of the Integrate tab, replace the default code with the2.
following code:

 {
 "bindings": [
 {
 "name": "name",
 "type": "activityTrigger",
 "direction": "in"
 }
],
 "disabled": false
 }

Creating Activity function
CreateBARCodeImagesPerCustomer

Create a new Function named CreateBARCodeImagesPerCustomer using the1.
Durable Functions Activity template, replace the default code with the following
code and click on the Save button to save the changes:

 #r "Microsoft.Azure.WebJobs.Extensions.DurableTask"
 #r "Microsoft.WindowsAzure.Storage"
 using Microsoft.WindowsAzure.Storage.Blob;

 public static async Task<int> Run(DurableActivityContext
 customerContext,TraceWriter log)
 {
 int ncustomerId = Convert.ToInt32
 (customerContext.GetInput<string>());
 Random objRandom = new Random(Guid.NewGuid().GetHashCode());
 int nRandomValue = objRandom.Next(50000);
 for(int nProcessIndex = 0;nProcessIndex<=nRandomValue;
 nProcessIndex++)
 {
 log.Info($" running for {nProcessIndex}");
 }
 return nRandomValue;
 }

Developing Reliable and Durable Serverless Applications Using Durable
Functions Chapter 8

[248]

In the Advanced editor of the Integrate tab, replace the default code with the2.
following code:

 {
 "bindings": [
 {
 "name": "customerContext",
 "type": "activityTrigger",
 "direction": "in"
 }
]
 }

Let's run the function using Postman. We will be stopping the App Service (to3.
simulate a restart of the VM where the function would be running and see how
the Durable Function resumes from where it was paused).
Make a POST request using Postman as shown in the following screenshot:4.

Once you click on the Send button, you will get a response with the status URL.5.
Click on the statusQueryGetURi to view the status of the Function. Clicking on
the statusQueryGetURi link will open it in a new tab within the Postman tool.
Once the new tab is opened, click on the Send button to get the progress of the
Function.
Please quickly open the Microsoft Storage Explorer and open the6.
DurableFunctionsHubHistory table shown as follows:

Developing Reliable and Durable Serverless Applications Using Durable
Functions Chapter 8

[249]

Let's navigate to the Function app's Overview blade(while the function is7.
running) and stop the service by clicking on the Stop button as shown in the
following screenshot:

The execution of the function will be stopped in the middle. Let's navigate to the8.
storage account in Storage explorer and open
the DurableFunctionsHubHistory table to see how much progress has been
made as shown in the following screenshot:

After some time, in my case just after 5 mins, go back to the Overview blade and9.
start the Function App service. You will notice that the Durable Function will
resume from where it had stopped. We didn't write any code for this, it's an out-
of-the-box feature. Below is the screenshot of the completed function.

Developing Reliable and Durable Serverless Applications Using Durable
Functions Chapter 8

[250]

How it works...
Durable Function allows us to develop reliable execution of the functions which means that
even if the VMs are restarted or crashed while the function is running, it automatically
resumes back to its previous state automatically. It does so with the help of something
called as Checkpointing and Replaying, where the history of the execution is stored in the
Storage Table. You can learn more about this feature at https:/ /azure. github. io/azure-
functions-durable- extension/ articles/ topics/ checkpointing- and- replay. html.

There's more...
In case if you get a 404 Not Found response when you run
the statusQueryGetURi URL, just don't worry. It would take some and
eventually work when you make a request again.
In order to view the Execution history of your Durable Functions, please navigate
to the table named DurableFunctionsHubHistory which is located in the
Storage Account which is created while creating the Function app, you can find
the Storage Account name in the Application settings as shown in the following
screenshot:

https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html
https://azure.github.io/azure-functions-durable-extension/articles/topics/checkpointing-and-replay.html

Developing Reliable and Durable Serverless Applications Using Durable
Functions Chapter 8

[251]

See also
The Creating a hello world Durable function app recipe
The Configuring Durable Functions in the Azure Management portal recipe
The Testing and troubleshooting Durable Functions recipe

9
Implement Best Practices for

Azure Functions
In this chapter, you will learn a few of the best practices that can be followed while working
with the Azure Functions such as:

Adding multiple messages to a Queue using the IAsyncCollector function
Implementing defensive applications using Azure Functions and Queue triggers
Handling massive ingress using Event Hub for IoT and alike scenarios
Enabling authorization for function apps
Controlling access to Azure Functions using function keys

Adding multiple messages to a Queue using
the IAsyncCollector function
In the first chapter, you learned how to create a Queue message for each request coming
from the HTTP request. Now let's assume that each user is registering their devices
(mobiles, laptops, and so on) using any client application (for example, a desktop app, a
mobile app, or any client website) that can send multiple records in a single request. In
these cases, the backend application should be smart enough to handle the load coming to
it. In these cases, there should be a mechanism to create multiple Queue message in a single
go asynchronously. You will learn how to create multiple Queue messages using the
IAsyncCollector interface.

Implement Best Practices for Azure Functions Chapter 9

[253]

Here is a sample diagram that depicts the data flow from different client applications to the
backend web API:

In this recipe, we will simulate the requests using the Postman tool that sends the request to
the Backend Web API (HttpTrigger) that can create all the Queue messages in a single go.

Getting ready
These are the required steps:

Create a storage account using Azure Management portal if you have not created
it yet.
Install Microsoft Storage Explorer from http:/ /storageexplorer. com/ if you
have not installed it yet.

http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/

Implement Best Practices for Azure Functions Chapter 9

[254]

How to do it...
Create a new HTTP trigger named BulkDeviceRegistrations by setting the1.
Authorization Level to Anonymous.
Replace the default code with the following code. You might get compilation2.
errors. Don't worry, we will fix that in the next few steps:

 using System.Net;
 using Newtonsoft.Json;
 public static void Run(HttpRequestMessage req, TraceWriter log,
 IAsyncCollector<string>DeviceQueue)
 {
 var data = req.Content.ReadAsStringAsync().Result;
 dynamic inputJson = JsonConvert.DeserializeObject<dynamic>
 (data);
 for(int nIndex=0;nIndex<inputJson.devices.Count;nIndex++)
 {
 DeviceQueue.AddAsync
 (Convert.ToString(inputJson.devices
 [nIndex]));
 }
 }

Click on the Save button and navigate to the Integrate tab and add a new Azure3.
Queue Storage output binding then click on Select button and provide the name
of the Queue and other parameters, as shown in the following screenshot:

Implement Best Practices for Azure Functions Chapter 9

[255]

Click on the Save button to save the changes and navigate to the code editor of4.
the Azure Function.
In the code editor, click on the Viewfiles tab and add a new file named the5.
project.json.
Let's add a Newtonsoft.Json NuGet package by adding the following JSON in6.
the project.json file:

 {
 "frameworks" : {
 "net46": {
 "dependencies":{
 "Newtonsoft.Json" : "10.0.2"
 }
 }
 }
 }

Let's run the function from the Test tab of the portal with the following input7.
request JSON:

 {
 "devices":
 [
 {
 "type": "laptop",
 "brand":"lenovo",
 "model":"T440"
 },
 {
 "type": "mobile",
 "brand":"Mi",
 "model":"Red Mi 4"
 }
]
 }

Implement Best Practices for Azure Functions Chapter 9

[256]

Click on the Run button to test the functionality. Now open the Azure Storage8.
Explorer and navigate to the Queue named as devicequeue. As shown in the
following figure, you should see two records:

How it works...
Create a new HTTP function that has a parameter of type IAsyncCollector<string>,
which could be used to store multiple messages in a Queue service in a single go
asynchronously. This approach of storing multiple items asynchronously will reduce lots of
load on the instances. We also added the Newtonsoft.Json NuGet package by adding the
references in the project.json file.

Finally, we ran a test on invoking Http trigger right from the Azure Management portal and
also saw the Queue messages get added using the Azure Storage Explorer.

There's more...
You can also use the ICollector interface in place of IAsyncCollector if you would like
to store multiple messages synchronously.

Implement Best Practices for Azure Functions Chapter 9

[257]

Implementing defensive applications using
Azure Functions and Queue triggers
For many of the applications, even after performing multiple tests of different
environments, there might still be unforeseen reasons why the application would fail.
Developers and architects cannot predict all the unexpected inputs throughout the lifespan
of the application being used by the business users or the end users. So, it's a good practice
to make sure that your application alerts you and send notifications in case of any errors or
unexpected issues with the applications.

In this recipe, you will learn how the Azure Functions help us in handling these kinds of
issues with minimal code.

Getting ready
These are the required steps:

Create a storage account using Azure Management portal if you have not created
it yet.
Install Microsoft storage Explorer from http:/ /storageexplorer. com/ if you
have not installed it yet.

How to do it...
In this recipe, we will develop the following pieces of code:

Develop a Console Application using C# that connects to the storage account and1.
creates Queue messages in the Queue named myqueuemessages.
Create a Azure Function Queue trigger named ProcessData that gets fired2.
whenever a new message is being added to the Queue named
myqueuemessages.

http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/
http://storageexplorer.com/

Implement Best Practices for Azure Functions Chapter 9

[258]

CreateQueueMessage - C# Console Application
Create a new Console Application using the C# language. Make sure that you1.
choose the latest framework.
Create an app setting key named StorageConnectionString with your storage2.
account connection string.
Install the WindowsAzure.Storage NuGet package using the following3.
command:

 Install-Package Windowsazure.Storage

Add the following namespaces and a reference to the4.
System.Configuration.dll file:

 using Microsoft.WindowsAzure.Storage;
 using Microsoft.WindowsAzure.Storage.Queue;
 using System.Configuration;

Add the following function to your Console Application and call it from the Main5.
method. The CreateQueueMessages function creates 100 messages with the
index as the content of each message:

 static void CreateQueueMessages()
 {
 CloudStorageAccount storageAccount =
 CloudStorageAccount.Parse(ConfigurationManager.AppSettings
 ["StorageConnectionString"]);
 CloudQueueClient queueclient =
 storageAccount.CreateCloudQueueClient();

 CloudQueue queue = queueclient.GetQueueReference
 ("myqueuemessages");
 queue.CreateIfNotExists();

 CloudQueueMessage message = null;
 for(int nQueueMessageIndex = 0; nQueueMessageIndex <= 100;
 nQueueMessageIndex++)
 {
 message = new CloudQueueMessage(Convert.ToString
 (nQueueMessageIndex));
 queue.AddMessage(message);
 Console.WriteLine(nQueueMessageIndex);
 }
 }

Implement Best Practices for Azure Functions Chapter 9

[259]

Developing the Azure Function - Queue trigger
Create a new Azure Function named ProcessData using the Queue trigger that1.
monitors the trigger named myqueuemessages. This is how the Integrate tab
should look after you create the function:

Replace the default code with the following code:2.

 using System;
 public static void Run(string myQueueItem,
 TraceWriter log)
 {
 if(Convert.ToInt32(myQueueItem)>50)
 {
 throw new Exception(myQueueItem);
 }
 else
 {
 log.Info($"C# Queue trigger function
 processed: {myQueueItem}");
 }
 }

The preceding Queue trigger logs a message with the content of the Queue (it's3.
just a numerical index) for the first 50 messages and then throws an exception for
the all the messages whose content is greater than 50.

Implement Best Practices for Azure Functions Chapter 9

[260]

Running tests using the Console Application
Let's execute the Console Application by pressing Ctrl + F5, navigate to the Azure1.
Storage Explorer, and view the Queue contents.
In just a few moments, you should start viewing messages in the2.
myqueuemessages Queue, as shown here. Currently, both Azure Management
portal and the Storage Explorer display the first 32 messages. You need to use the
C# storage SDK to view all the messages in the Queue.

Don't get surprised if you notice that your messages in myqueuemessage
are vanishing. It's expected that as soon as a message is read successfully,
the message gets deleted from the Queue.

Implement Best Practices for Azure Functions Chapter 9

[261]

As shown here, you should also see a new Queue named myqueuemessages-3.
poison (<OriginalQueuename>-Poison) with the other 50 Queue messages in
it. The Azure Function runtime will automatically take care of creating a new
Queue and adding the messages that are not read properly by the Azure
Functions:

How it works...
We have created a Console Application that creates messages in the Azure Storage Queue.
And we have also developed a Queue trigger that is capable of reading the messages in the
Queue. As part of simulating an unexpected error, we are throwing an error if the value in
the Queue message content is greater than 50.

Azure Functions will take care of creating a new Queue with the name
<OriginalQueueName>-Poison and will insert all the unprocessed message in the new
Queue. Using this new poison Queue, the developers can review the content of the
messages and take necessary actions to fix the error in the applications (in this case, Queue
trigger).

The Azure Function runtime will take care of deleting the Queue message
after the Azure Function execution is completed successfully. In case of
any problem in the execution of the Azure Function, it automatically
creates a new poison Queue and adds the processed messages to the new
Queue.

Implement Best Practices for Azure Functions Chapter 9

[262]

There's more...
Before pushing a Queue message to the poison Queue, the Azure Function runtime tries to
pick the message and process five times. You can learn how this process works by adding a
new parameter dequecount of type int to the Run method and log its value.

Handling massive ingress using Event Hub
for IoT and similar scenarios
In many scenarios, you might have to handle massive amounts of incoming data, where the
incoming data might be coming from sensors and telemetry data, and it could be as simple
as the data sent from your Fitbit devices from many end users who use it continuously. In
these scenarios, we need to have a reliable solution that is capable of handling massive
amounts of data. Azure Event Hubs is one such solution that Azure provides. In this recipe,
you will learn how to integrate Event Hubs and Azure Functions.

Getting ready
Perform the following steps:

Create an Event Hub namespace by navigating to Internet of Things and1.
choosing Event Hubs.
Once the Event Hub namespace is created, navigate to the Overview tab and2.
click on the Event Hub icon to create a new Event Hub, as shown in the following
screenshot:

Implement Best Practices for Azure Functions Chapter 9

[263]

By default, a Consumer Group named $Default is created, which we will be3.
using in this recipe.

How to do it...
We will perform this recipe using the following steps:

Creating an Azure Function Event Hub trigger
Developing a Console Application that simulates IoT data

Creating an Azure Function Event Hub trigger
Create a new Azure Function by choosing EvenHubTrigger - C# in the template1.
list, as shown in the following screenshot:

Implement Best Practices for Azure Functions Chapter 9

[264]

Once you select the template, you need to provide the name of the Event Hub, its2.
capturemessage, as shown in the following screenshot. If you don't have any
connections configured yet, you need to click on the new button:

Implement Best Practices for Azure Functions Chapter 9

[265]

Clicking on the new button will open a Connection popup, where you can3.
choose your Event Hub and other details. Choose the required details and click
on the Select button, as shown in the following screenshot:

The Name your function section should look like this after you provide all the4.
details. Now click on Create to create the function:

Implement Best Practices for Azure Functions Chapter 9

[266]

Developing a Console Application that simulates IoT
data

Create a new Console Application that will send events to the Event Hub. I have 1.
named it as EventHubApp.
Run the following commands in the NuGet package manager to install the2.
required libraries to interact with the Azure Event Hubs:

 Install-Package Microsoft.Azure.EventHubs
 Install-Package Newtonsoft.Json

Add the following namespaces and a reference to System.Configuration.dll:3.

 using Microsoft.Azure.EventHubs;
 using System.Configuration;

Add the connection string in the App.config, which is used to connect the Event4.
Hub. This is the code for App.config. You can get the Connection String by
clicking on the ConnectionStrings link available in the Overview tab of the Event
Hub namespace:

 <?xml version="1.0" encoding="utf-8" ?>
 <configuration>
 <startup>
 <supportedRuntime version="v4.0"
 sku=".NETFramework,Version=v4.6.1" />
 </startup>
 <appSettings>
 <add key="EventHubConnection"
 value="Endpoint=sb://event hug namespace
 here.servicebus.windows.net/;Entitypath=Event Hubname;
 SharedAccessKeyName= RootManageSharedAccessKey;
 SharedAccessKey=Key here"/>
 </appSettings>
 </configuration>

Implement Best Practices for Azure Functions Chapter 9

[267]

Create a new C# Class file and place the following code in the new class file:5.

 using System;
 using System.Text;
 using Microsoft.Azure.EventHubs;
 using System.Configuration;
 using System.Threading.Tasks;

 namespace EventHubApp
 {
 class EventHubHelper
 {
 static EventHubClient eventHubClient = null;
 public static async Task GenerateEventHubMessages()
 {

 EventHubsConnectionStringBuilder conBuilder = new
 EventHubsConnectionStringBuilder
 (ConfigurationManager.AppSettings
 ["EventHubConnection"].ToString());

 eventHubClient =
 EventHubClient.CreateFromConnectionString
 (conBuilder.ToString());
 string strMessage = string.Empty;
 for (int nEventIndex = 0; nEventIndex <= 100;
 nEventIndex++)
 {
 strMessage = Convert.ToString(nEventIndex);
 await eventHubClient.SendAsync(new EventData
 (Encoding.UTF8.GetBytes(strMessage)));
 Console.WriteLine(strMessage);
 }
 await eventHubClient.CloseAsync();
 }
 }
 }

Implement Best Practices for Azure Functions Chapter 9

[268]

In your Main function, replace the following code that invokes the method that6.
can start sending the message:

 namespace EventHubApp
 {
 class Program
 {
 static void Main(string[] args)
 {
 EventHubHelper.GenerateEventHubMessages().Wait();
 }
 }
 }

Now execute the application by pressing Ctrl + F5. You should see something7.
similar to what is shown here:

Implement Best Practices for Azure Functions Chapter 9

[269]

While the console is printing the numbers, you can navigate to the Azure8.
Function to see that the Event Hub triggers gets triggered automatically and logs
the numbers that are being sent to the Event Hub, as shown in the following
screenshot:

Enabling authorization for function apps
If your web API (HTTP trigger) is being used by multiple client applications and you would
like to provide access only to the intended and authorized applications, then you need to
implement authorization in order to restrict access to your Azure Function.

Getting ready
I assume that you already know how to create a HTTP trigger function. Download the
Postman tool from https:/ /www. getpostman. com/ . The Postman tool is used for sending
the HTTP requests. You can also use any tool or application that can send HTTP requests
and headers.

https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/

Implement Best Practices for Azure Functions Chapter 9

[270]

How to do it...
Create a new HTTP trigger function (or open an existing HTTP function). Make1.
sure that while creating the function, you select Function as the option in the
Authorization level drop-down:

If you would like to go with an existing HTTP trigger function that we
have created in one of our previous recipes, click on the Integrate tab and
change the Authorization level to Function and click on the Save button
to save the changes.

In the code editor tab, grab the function URL by clicking on the Get Function2.
URL link available in the right-hand side corner of the code editor in the
run.csx file.
Navigate to Postman tool and paste the function URL:3.

Implement Best Practices for Azure Functions Chapter 9

[271]

Observe the URL that has the following query strings:4.
code: This is the default query string that is expected by the function
runtime that validates the access rights of the accessing the function.
The validation functionality is automatically enabled without the need
for writing the code by the developer. All of this is taken care just by
enabling the Authorization level to Function.
name: This is a query string that is required by the HTTP trigger
function.

Let’s remove the code query string from the URL in the Postman and try to make5.
a request. You will get a 401 Unauthorized error, as shown in the following
screenshot:

How it works...
When you make a request via Postman or any other tool or application that can send HTTP
requests, the request will be received by the underlying Azure App Service web app (note
that Azure Functions are built on top of App Services) that first checks the presence of the
header name code either in the query string collection or in the Request Body. If it finds
one, then it validates the value of the code query string with the function keys. If it’s a valid
one, then it authorizes the request and allows the runtime to process the request. Otherwise,
it throws an error with a 401 Unauthorized request.

Implement Best Practices for Azure Functions Chapter 9

[272]

There's more...
Note that the security key (in the form of the query string parameter named code) in the
preceding example is used for demonstration. In production scenarios, instead of passing
the key as a query string parameter (the code parameter), you need to add the x-
functions-key as an HTTP header, as shown in the following figure:

See also
The Controlling access to Azure Functions using function keys recipe

Controlling access to Azure Functions using
function keys
You have now learned how to enable the authorization of an individual HTTP trigger by
setting the Anonymous Level field with the value Function in the Integrate tab of the HTTP
trigger function. It works well if you have only one Azure Function as a backend web API
for one of your applications and you don't want to restrict access to the public.

However, in Enterprise level applications, you will end up developing multiple Azure
Functions across multiple function apps. In those cases, you would like to have fine-grained
granular access to your Azure Function for both your own applications or for some other
third-party applications that integrate your APIs in their applications.

In this recipe, you will learn how to work with function keys within Azure Functions.

Implement Best Practices for Azure Functions Chapter 9

[273]

How to do it...
Azure supports the following keys, which can be used to control access to the Azure
functions:

Function Keys: These can be used to grant authorization permissions to a given
function. These keys are specific to the current function to which the keys are
associated.
Host Keys: We can use these to control the authorization of all the functions
within an Azure function app.

Configuring the function key for each application
If you are developing an API using Azure Functions that can be used by multiple
applications, then it’s a good practice to have a different function key for every function and
generate an individual key for each client application that is going to use your functions.
Navigate to the Manage tab of the Azure Function to view and manage all the keys related
to the function.

By default, a key with the name default is generated for us. If you would like to generate a
new key, then click on the Add new function key button shown in the preceding
screenshot.

Implement Best Practices for Azure Functions Chapter 9

[274]

As per the preceding image, I have created the keys for the following applications:

WebApplication: The key name WebApplication is configured to be used in
the website that uses the Azure Function.

MobileApplication: The key name MobileApplication is configured to be
used in the mobile app that uses the Azure Function.

In a similar way, you can create different keys for any other app (in the preceding example,
an IOT application) depending on your requirements.

The idea behind having different keys for the same function is to have control over the
access permissions to the usage of the functions by different applications. For example, if
you would like to revoke the permissions only to an application but not for all the
applications, then you would just delete (or revoke) that key. In that way, you are not
impacting other applications that are using the same function.

Here is the downside of the function keys: if you are developing an application where you
need to have multiple functions and each function is being used by multiple applications,
then you will end up having many keys. Managing these keys and documenting them
would be a nightmare. In that case, you can go with host keys, which is discussed next.

Configuring one host key for all the functions in a
single function app
Having different keys for different functions is a good practice when you have a handful
number of functions used by few applications. However, things might get worse if you
have many functions and many client applications that leverage your APIs. Managing the
function keys in these large enterprise applications with a huge client base would be
painful. To make things simple, you can segregate all related functions into a single
function app and configure the authorization for each function app instead of an individual
function. You can configure authorization for a function app using host keys.

Here are the two different types of host keys available:

Regular host keys
Master key

Implement Best Practices for Azure Functions Chapter 9

[275]

Create two HTTP trigger Apps, as shown in the following screenshot:

Navigate to the Manage tab of both the apps, as shown in the following screenshot. You
will notice that both the master key and the host keys are the same in both the apps.

Manage tab of MyApp1

Manage tab of MyApp2

Implement Best Practices for Azure Functions Chapter 9

[276]

As with the case of function keys, you can also create multiple host keys if
your function apps are being used by multiple applications. You can
control the access of each of the function apps by different applications
using different keys.
You can create multiple host keys by following the same steps that you
followed in creating the regular function keys.

There's more...
Renew: If you think that the key is compromised, then you can regenerate the key anytime
by clicking on the Renew button. Note that when you renew any key, all the applications
that access the function would no longer work and would get a 401 Unauthorized status
code error.

Revoke: You can delete the key if it is no longer used in any of the applications.

Key type When should I use?

Is it
revocable
(can be
deleted)?

Renew Comments

Master key
When the
Authorization level is
Admin

No Yes

You can use master key for
any function within the
function app irrespective of
the authorization level
configured

Host key
When the
Authorization level is
Function

Yes Yes
You can use the host key for
all the functions within the
function app

Function
key

When the
Authorization level is
Function

Yes Yes You can use the function key
only for a given function

Microsoft doesn't recommend sharing master key as it is also used by
runtime APIs. Be extra cautious with master key.

Implement Best Practices for Azure Functions Chapter 9

[277]

See also
The Enabling authorization for function apps recipe

10
Implement Continuous

Integration and Deployment of
Azure Functions Using Visual

Studio Team Services
In this chapter, you will learn the following:

Continuous integration - creating a build definition
Continuous integration - queuing the build and trigger manually
Continuous integration - configuring and triggering the automated build
Continuous deployment - creating a release definition
Continuous deployment - triggering the release

Introduction
As a software professional, you might have already been aware of different software
development methodologies that people practice. Irrespective of the methodology being
followed, one will have multiple environments such as dev, staging, and production where
the application life cycle needs to be followed with these critical stages related to
development:

Develop based on the requirements1.
Build the application and fix any errors2.

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[279]

Deploy/release the package to an environment (Dev / Stage / Prod)3.
Test against the requirements4.
Promote the release to the next environment (from Dev to Stage and Stage to5.
Prod)

Please note that for the sake of simplicity, the initial stages, such as
requirement gathering, planning, design, and architecture, are excluded
just to emphasize the stages that are relevant to this chapter.

For each change that you make to the software, we need to build and deploy the application
to multiple environments, and it might be the case that different teams are responsible for
releasing the builds to different environments. As different environments and teams are
involved, considering the amount of time that is spent in running the builds, deploying
them in different would be more dependent on the processes that different companies
follow.

In order to streamline and automate a few of the steps mentioned earlier, in this chapter, we
will discuss some of the popular techniques that the industry follows in order to deliver the
software quickly with minimum infrastructure.

In all the previous chapters, most of the recipes provided us with a
solution for an individual business problem. However, in this chapter, the
entire chapter as a single entity will try to provide you with a solution for
continuous integration and continuous delivery on your business critical
application.

The Visual Studio team continuously keeps adding new features to VSTS (https:/ /www.
visualstudio.com) and updates the user interface as well. Don't be surprised if screenshots
that are provided in this chapter don't match those of your screens in the https:/ / www.
visualstudio.com while you are reading this.

https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[280]

Prerequisites
Create the following if you have don't have them already:

Create a Visual Studio Team Services (VSTS) account in https:/ /www.1.
visualstudio. com and create a new project within that account. While creating
the project, you can either choose Git or Team Foundation Version Control as
your version control repository from your VSTS account. I have used TFVC for
my project. You can go through the https:/ /www. visualstudio. com/ en- us/
docs/setup- admin/ team- services/ set- up- vs link to follow the step-by-step
process of creating a new account and project using VSTS.

Configure your Visual Studio project that you developed in Chapter2.
4, Understanding the Integrated Developer Experience of Visual Studio Tools for Azure
Functions to the VSTS.

Continuous integration - creating a build
definition
A build definition is a set of tasks that are required to configure an automated build of your
software. In this recipe, we will perform the following.

Create the Build definition template.1.
Provide all the inputs required for each of the steps for creating the build2.
definition

How to do it...
Navigate to the Builds & Release tab in your VSTS account and click on New1.
Definition to start the process of creating a new build definition.

https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs
https://www.visualstudio.com/en-us/docs/setup-admin/team-services/set-up-vs

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[281]

You will be taken to the Select a template step, where you can choose the2.
required template for your required application. For this recipe, we will choose
ASP.NET Core (.NET Framework), as shown here, by clicking on the Apply
button:

The Create build step is a set of steps used to define the build template. As3.
shown in the following screen capture, the build definition has six steps, where
each step has certain attributes that we need to review and provide inputs for
each of those fields based on our requirements. Let's start by providing a
meaningful name in the Process step, as shown in the following figure:

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[282]

Select the HostedVS2017 option in the Default agent queue drop-down, as4.
shown in the following screen capture:

An agent is a software hosted on the cloud that is capable of running a
build. As our project is based on VS2017, we have chosen HostedVs2017.

In the Get Sources step, choose the following:5.
Select the version control system that you would like to have. 1.
Choose the branch that you want to build. In my example, I have only2.
one default branch.

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[283]

Leave the default options for all the following steps:6.
NuGet restore: This step is required for downloading and installing all1.
the required packages for the application.
Build solution: This step uses MS Build and has all the predefined2.
commands to create the build.
Test Assemblies: This would be useful if we had any automated tests.3.
Test assemblies are beyond the scope of this book.
Publish symbols path: These symbols are useful if you want to debug4.
your app hosted in the Agent VM.
Publish Artifact: The step has configuration related to the artifacts and5.
the path of storing the artifact (build package).

Once you review all the values in all the fields, click on Save, as shown in the7.
following screenshot, and click on Save again in the Save build definition
popup:

How it works...
Build definition is just a blueprint of the tasks that are required for building a software
application. In this recipe, we have used a default template to create the build definition.
We can choose a blank template and create the definition by choosing the tasks available in
the VSTS as well.

When you run the build definition (either manually or automatically, which will be
discussed in the subsequent recipes), each of the tasks will be executed in the order in
which you have configured them. You can also rearrange the steps by dragging and
dropping them in the Process section.

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[284]

The build process starts with getting the source code from the chosen repository and then
downloading the required NuGet packages and then starts the process of building the
package, and once the process is complete, it creates a package and stores it in a folder
configured for the build.artifactstagingdirectory directory (refer to the Path to
Publish field of the Publish Artifact task). You can learn about all different type of
variables in the Variables tab shown here:

There's more...
VSTS provides many tasks. You can choose a new task for the template by1.
clicking on the Add Task button, as shown in the following figure:

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[285]

If you don't find a task that suits your requirement, you can definitely search for2.
the suitable one in the market place by clicking on the Check out our
Marketplace button shown in the preceding figure.
ASP.NET Core (.NET Framework) has the correct set of tasks required to set up3.
the build definition for Azure Functions as well.

See also
The Creating a Release definition recipe

Continuous integration - queuing the build
and trigger manually
In the previous recipe, you came to understand and learned how to create and configure the
build definition. In this recipe, you will learn how to trigger the build manually and
understand the process of building the application.

Getting ready
Before we begin, make sure:

That you have configured the build definition as mentioned in the previous1.
recipe.
That all your source code is checked in to the VSTS Team project.2.

How to do it...
Navigate to the build definition named build-def-stg and click on the Queue1.
button available on the right-hand side, as shown here:

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[286]

In the Queue build for build-def-stg popup, please make sure that the Hosted2.
VS2017 option is chosen in the Agent queue drop-down if you are using Visual
Studio 2017 and click on the Queue button, as shown here:

After you click on the Queue button in the preceding screen capture, in just a few3.
moments, the build will be queued and the message will be displayed as shown
in the following figure:

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[287]

Clicking on the BuildID (in my case, 20170804.1) will start the process, and it4.
waits for a few seconds for an available agent to start the process, as shown here:

After a few moments, the build process will start, and in just a minute, if5.
everything goes fine, the build will be completed and you can review the steps of
the build in the logs, as shown here:

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[288]

In the preceding screen capture, click on BuildID (in my case, 20170804.1) to6.
view the summary of the build, which is also shown here:

If you would like to view the output of the build, click on the Artifacts button7.
highlighted in the preceding screen capture. You can (1) download the files by
clicking on the Download button or (2) view the files in the browser by clicking
on the Explore button, as shown here:

See also
The Continuous integration - creating a build definition recipe
The Configuring and triggering the automated build recipe

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[289]

Configuring and triggering the automated
build
For most of the applications, it might not make sense to perform manual builds in the VSTS.
It would make sense if we can configure continuous integration by automating the process
of triggering the build for each check-in/commit done by the developers.

In this recipe, you will learn how to configure continuous integration in the VSTS for your
team project and also trigger the automated build by making a change to the code of the
HTTPTrigger Azure function that we have created in Chapter 4, Understanding the
Integrated Developer Experience of Visual Studio Tools for Azure Functions.

How to do it...
Navigate to the build definition build-def-stg that we have created and click on1.
the Triggers menu, shown as follows:

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[290]

Now, click on the Enable this Trigger button to enable the automated build2.
trigger. You can also configure the items that you would like to exclude in this
step:

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[291]

Save the changes by clicking on the arrow mark available beside the Save &3.
queue button and click on the Save button available in the drop-down menu,
which is shown here:

Let's navigate to the Azure function project in Visual Studio. Make a small4.
change to the last line of the Run function source code that is shown here. I just
replace the word hello with Automated Build Trigger test by, as shown
here:

 return name == null
 ? req.CreateResponse(HttpStatusCode.BadRequest, "Please pass a
 name on the query string or in the request body")
 : req.CreateResponse(HttpStatusCode.OK, "Automated Build
 Trigger test by " + name);

Let's check in the code and commit the changes to the Source Version control5.
VSTS. As shown here, you will get a new ChangeSetId generated. In this case, it
is Changeset 11.

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[292]

Now, immediately navigate back to the VSTS build definition to see that a new6.
build got triggered automatically and is in progress, as shown. Also, note that
ChangeSetId is mentioned in the Triggered by column, as shown in the
following figure:

How it works...
These are the steps followed in this recipe:

We enabled the automatic build trigger for the build definition.1.
We made a change to the codebase and checked in to VSTS.2.
Automatically, a new build got triggered in VSTS immediately after the code is3.
committed to the VSTS.

There's more...
If you would like to restrict the developers to check in the code only after a successful build,
then you need to enable Gated-Check-in. In order to enable this, edit the build definition by
clicking on the ellipses, as shown here:

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[293]

In the popup, click on the Edit button and then navigate to the Triggers tab and enable
Gated Check-in, as shown in the following figure:

Now go back to Visual Studio and make some changes to the code. If you try to check in the
code without building the application from within the Visual Studio, then you will get an
alert, as shown here:

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[294]

Click on Build Changes in the preceding step to start the build in the Visual Studio. As
soon as the build in the Visual Studio is complete, the code will be checked into the VSTS
and then a new build in VSTS will be triggered automatically.

See also
The Continuous integration - creating a build definition recipe
The Continuous integration - queuing the build and trigger manually recipe

Creating a release definition
Now that we know how to create a build definition and trigger an automated build in the
VSTS, our next step is to release or deploy the package to an environment where the project
stakeholders can review and provide feedback. In order to do that, first, we need to create a
release definition in the same way that we created the build definitions.

Getting ready
I have used the new Release definition editor to visualize the deployment pipelines.
The Release definition editor is still in preview. By the time you are reading this, if it is still
in preview, then you can enable it by clicking on the profile image and then clicking on the
Preview features link, as shown in the following figure:

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[295]

You can then enable New Release Definition Editor, as shown here:

Let's get started with creating a new release definition.

How to do it...
Navigate to the Releases tab, as shown in the following figure, and click on the1.
New Definition link:

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[296]

The next step is to choose a Release Definition template. In the Select a2.
Template popup, select Azure App Service Deployment and click on the Apply
button, as shown in the following screenshot. Immediately after clicking on the
Apply button, a new Environment popup will be displayed. For now, just close
the Environment popup:

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[297]

Click on the Add button available in the Artifacts box to add a new Artifact, as3.
shown in the following figure:

In the Add Artifact popup, make sure that you choose the following:4.
Source type - Build1.
Project - The team project your source code is linked to.2.
Source (Build definition) - The build definition name where your3.
builds are created.

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[298]

After reviewing all the values in the page, click on the Add button to add the5.
artifact.

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[299]

Once the Artifact is added, the next step is to configure the Environment where6.
the package needs to be published. Click on the 1 Phase 1 Task link, as shown in
the following figure. Also, change the name of the release definition name to
release-def-stg.

You will be taken to the Tasks tab, as shown here. Provide a meaningful name to7.
the Environment name field. I have provided the name as Staging for this
example. Next, click on the Deploy Azure App Service item.

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[300]

In the Deploy Azure App Service step, choose the Azure Subscription and the8.
App Service name in which you would like to deploy the release, as shown here.

If you don't see your subscription or app service, refresh the item by
clicking on the icon highlighted in the following screenshot.

Click on the Save button to save the changes. Now let's use this release definition9.
and try to create new release by clicking on Create release, as shown in the
following screenshot:

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[301]

After clicking on the Create release button, you will be taken to the Create new10.
release popup where you can configure the build definition that needs to be
used. As we have only one, we can see only one build definition, as shown here.
Once you review it, click on the Queue button to queue the release:

Clicking on the Queue button in the preceding step will get the package and11.
deploy it to the selected app service.

How it works...
In the Pipeline tab, we have created Artifacts and an Environment named Staging and
linked both.

We have also configured the Environment to have the Azure App Service related to the
Azure Functions that we created Chapter 4, Understanding the Integrated Developer
Experience of Visual Studio Tools for Azure Functions.

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[302]

There's more...
If you are configuring continuous deployment for the first time, you might see a button
with the text Authorize in the Azure App Service Deployment step. Clicking on the
Authorize button will open a pop-up window where you will be prompted to provide your
Azure Management Portal's credentials.

See also
The Trigger the release automatically recipe
The Deploying the Azure Function app to Azure Cloud using Visual Studio recipe of
Chapter 4, Understanding the Integrated Developer Experience of Visual Studio Tools
for Azure Functions

Trigger the release automatically
In this recipe, you will learn how to configure continuous deployment to an environment.
In your project, you can configure a Dev/Staging or any other preproduction environment
and configure continuous deployment to streamline the deployment process.

In general, it is not recommended that you configure continuous deployment to the
production environment. However, it might depend on various factors and requirements.
Be cautious and think about various scenarios before you configure continuous deployment
to your production environment.

Getting ready
Download and install the Postman tool if you have not installed it yet.

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[303]

How to do it...
By default, the releases are configured to be pushed manually. Let's configure1.
continuous deployment by navigating back to the Pipelines tab and clicking on
the Continuous deployment trigger, as shown here:

As shown in the following figure, enable the Continuous deployment trigger2.
and click on Save to save the changes:

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[304]

Navigate to Visual Studio and make some code changes, as shown here:3.

 name = name ?? data?.name;
 return name == null
 ? req.CreateResponse(HttpStatusCode.BadRequest, "Please pass a
 name on the query string or in the request body")
 : req.CreateResponse(HttpStatusCode.OK, "Automated Build
 Trigger & Release Trigger test by " + name);

Now check in the code with a comment Continuous Deployment to commit the4.
changes to the VSTS. As soon as you check in the code, navigate to the Builds tab
to see a new build get triggered, as shown here:

Navigate to Releases tab after the build is complete to see that a new release got5.
triggered automatically, as shown in the following figure:

Once the release process is complete, you can review the change by making a6.
request to the HTTP Request using the Postman tool.

Implement Continuous Integration and Deployment of Azure Functions
Using Visual Studio Team Services Chapter 10

[305]

How it works...
In the Pipeline tab, we have enabled the Continuous deployment trigger.

Every time a build (associated with the build-def-stg) is triggered, automatically, the
release-def-stg release will be triggered to deploy the latest build to the designated
environment. We have also seen the automatic release in action by making a code change in
Visual Studio.

There's more...
You can also create multiple environments and configure the definitions to release the
required builds to those environments.

See also
The Creating a release definition recipe

Index

A
Analytics query language
 URL 174
Application Insights (AI)
 access keys, configuring 179
 custom derived metric report, configuring 183,

185

 custom telemetry details, pushing 173
 function, creating 175
 query, integrating 180, 182
 query, testing 180, 182
 URL 175, 186
 used, for monitoring Azure Functions 169, 173
 used, for testing Azure Function responsiveness

155

 used, for validating Azure Function
responsiveness 155

application telemetry
 details, sending via email 185, 189
authorization
 enabling, for function apps 269, 271
automated build
 configuring 289, 294
 creating 294, 301
 triggering 289
Azure Blob storage
 image, storing 25, 28
Azure Cloud storage
 connecting, from local Visual Studio environment

109, 111, 113, 114
Azure Cloud
 C# Azure Function, debugging with Visual Studio

120, 121, 122, 124
 function app, deploying with Visual Studio 115,

117, 118, 119
Azure Function Core Tools

 URL 105
Azure Function responsiveness
 testing, with Application Insights 155
 validating, with Application Insights 155
Azure Function Tools
 URL 99
Azure Functions
 about 7
 access, controlling with function keys 272
 and precompiled assemblies 213
 application, creating with Visual Studio 220
 Azure AI real-time Power BI - C# function,

creating 197, 201
 Blob trigger, testing with Microsoft Storage

Explorer 128
 creating, with Azure CLI tools 150, 154, 161
 developing 259
 function key, configuring for each application 273
 Function Keys 273
 host key, configuring for functions in single

function app 274
 Host Keys 273
 HTTP trigger Azure Function, creating 215, 217
 HTTP triggers, testing with Postman 127
 legacy C# application classes, migrating with

PowerShell 219
 load testing, VSTS used 144, 149
 Logic Apps, integrating 90
 monitoring 163, 169
 monitoring, Application Insights used 169, 173
 Queue trigger, testing with Azure Managemental

portal 131
 shared code, with class libraries 209, 212
 strongly typed classes, using 224, 228
 testing 126
 testing, Azure CLI tools used 150, 154, 161
 testing, on staged environment with deployment

[307]

slots 134, 143
 tests, executing with Console Application 260
 used, for Azure SQL Database interactions 69,

74

 used, for implementing defensive applications
257

 used, for integrating real-time AI monitoring data
with Power BI 190

Azure Management portal
 Durable Functions, configuring 230, 233
Azure SQL Database
 interactions, Azure Functions used 69, 74
Azure Storage Explorer
 URL 242
Azure Storage table output bindings
 Azure Table storage service 20
 partition key 20
 row key 20
 Storage Connection, exploring 19
 used, for persisting employee details 13

B
Backend Web API (HttpTrigger) 253
backend Web API
 building, with HTTP triggers 8, 13
Blob storage
 email logging, implementing 48
Blob trigger
 testing, Microsoft Storage Explorer used 128
build definition
 creating 280, 285

C
C# Azure Functions
 debugging, on Azure Cloud with Visual Studio

120, 121, 122, 124
 debugging, on local staged environment with

Visual Studio 2017 103, 104, 108, 109
Checkpointing and Replaying
 about 250
 URL 250
code repository
 creating, for manageability within function app

203, 207
Cognitive Services

 App settings, configuring 62
 Computer Vision API account, creating 60
 using, to locate faces from images 60
Computer Vision API
 URL 68
Console Application
 used, for executing tests 260
continuous delivery 279
continuous integration
 about 279
 build definition, creating 280, 285
 build, queuing 285, 288
 build, triggering manually 285, 288
custom derived metric report
 configuring 183, 185
custom telemetry
 details, pushing to analytics of Application

Insights 173

D
database as a service (DBaaS) 74
defensive applications
 C# Console Application, creating 258
 implementing, with Azure Functions 257
 implementing, with Queue triggers 257
deployment slots
 about 134
 used, for testing Azure Function on staged

environment 134, 143
Durable Functions
 Activity function

CreateQRCodeImagesPerCustomer, creating
247, 250

 Activity function GetAllCustomers, creating 246
 configuring, in Azure Management portal 230,

233

 Orchestrator function, creating 245
 testing 242, 244
 troubleshooting 242, 244
 URL 230
 used, for implementing multithreaded reliable

application 244

[308]

E
email content
 attachment, adding 53
 log file name, customizing with IBinder interface

51

 modifying, to include attachment 51
email logging
 implementing, in Blob storage 48
email notification
 sending, to administrator with SendGrid service

36

 sending, to end user dynamically 44
employee details
 persisting, with Azure Storage table output

bindings 13
Event Hub
 Azure Function Event Hub trigger, creating 263
 Console Application, developing to stimulate IoT

data 266
 used, for handling massive ingress 262

F
function app
 authorization, enabling 269, 271
 creating, with Visual Studio 2017 99, 100, 102,

103

 deploying, to Azure Cloud with Visual Studio
115, 117, 118, 119

function keys
 configuring, for each application 273
 used, for controlling access to Azure Functions

272

H
hello world Durable function app
 Activity function, creating 240
 creating 234
 developing 234
 HttpStart Function, creating 236
 Orchestrator function, creating 239
HTTP triggers
 testing, Postman used 127
 used, for building backend Web API 8, 13

I
IAsyncCollector function
 used, for adding multiple messages to queue

252

ImageResizer trigger
 used, for cropping image 29, 34
Integrated Development Environment (IDE) 98,

150

L
legacy C# application classes
 migrating, to Azure Functions with PowerShell

219

local staged environment, Visual Studio 2017
 C# Azure Functions, debugging 103, 104, 108,

109

local Visual Studio environment
 Azure Cloud storage, connecting 109, 111, 112,

113, 114
Logic Apps
 creating 82
 designing, with Gmail connector 84, 88
 designing, with Twitter connector 84, 88
 functionality, testing 89
 integrating, with Azure Functions 90, 95
 used, for monitoring tweets 81
 used, for notifying popular users tweet 81

M
massive ingress
 handling, with Event Hub for IoT 262
Microsoft Azure Storage Explorer
 URL 109, 126
Microsoft Storage Explorer
 reference link 253
 URL 257
 used, for testing Blob trigger 128
multithreaded reliable applications
 implementing, with Durable Functions 244

N
Node.js
 URL 150

[309]

O
OneDrive
 external file trigger, used for processing stored

file 74, 80
 URL 75
Orchestration triggers
 URL 234

P
Postman
 URL 126, 234, 242, 269
 used, for testing HTTP triggers 127
Power BI
 configuring, with dashboard 191, 197
 configuring, with dataset 191, 197
 configuring, with push URI 191, 197
 real-time AI monitoring data, integrating 190
PowerShell
 PowerShell Azure Function, creating 221
 used, migrating legacy C# application classes to

Azure Functions 219
precompiled assemblies
 about 213
 class library, creating with Visual Studio 214
precompiled functions
 advantages 109

Q
Queue trigger
 testing, with Azure Management portal 131
 used, for implementing defensive applications

257

Queue
 multiple messages, adding with IAsyncCollector

function 25, 252
 profile image, saving with Queue output bindings

20

R
real-time AI monitoring data
 integration, with Power BI using Azure Functions

190

Redis Cache 219
Release definition editor 294

release
 triggering automatically 302, 305

S
SendGrid
 account, creating 36
 SendGrid API key, configuring with Azure

Function app 40
 SendGrid API key, generating 39
 service used, for sending email notification to

administrator 36
shared access signature (SAS) 129
shared code
 across Azure Functions, with class libraries 209,

212

Simple Mail Transfer Protocol (SMTP) 43
slots 134
SMS notification
 sending, to end user with Twilio service 54
SQL Server Management Studio (SSMS)
 about 69
 URL 69
staged environment
 Azure Functions, testing with deployment slots

134, 143
strongly typed classes
 using, in Azure Functions 224, 228

T
Twilio
 service, using to send SMS notification 54
 URL 54

V
virtual machine (VM) 229
Visual Studio 2017 Preview Version 15.3.0
 URL 99
Visual Studio 2017
 C# Azure Functions, debugging on Azure Cloud

120, 121, 122, 124
 C# Azure Functions, debugging on local staged

environment 103, 104, 108, 109
 function app, creating 99, 100, 102, 103
 function app, deploying on Azure Cloud 115,

117, 118, 119
Visual Studio Team Services (VSTS)
 about 98, 125
 URL 280
 used, for load testing Azure Functions 144, 149
Visual Studio
 references 279

 used, for creating application 220
 used, for creating class library 214

W
WebJob attributes
 reference 114

	Cover
	Title Page
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewer
	Acknowledgments
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Accelerate Your Cloud Application Development Using Azure Function Triggers and Bindings
	Introduction
	Building a backend Web API using HTTP triggers
	Getting ready
	How to do it…
	How it works…
	See also

	Persisting employee details using Azure Storage table output bindings
	Getting ready
	How to do it...
	How it works...
	Understanding more about Storage Connection
	What is Azure Table storage service?
	Partition key and row key

	There's more...

	Saving the profile images to Queues using Queue output bindings
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Storing the image in Azure Blob storage
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also...

	Cropping an image using ImageResizer trigger
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 2: Working with Notifications Using SendGrid and Twilio Services
	Introduction
	Sending an email notification to the administrator of the website using the SendGrid service
	Getting ready
	Creating a SendGrid account
	Generating the SendGrid API key
	Configuring the SendGrid API key with the Azure Function app

	How to do it...
	How it works...
	See also

	Sending an email notification to the end user dynamically
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Implementing email logging in the Blob storage
	How to do it...
	How it works...

	Modifying the email content to include an attachment
	Getting ready
	How to do it...
	Customizing the log file name using IBinder interface
	Adding an attachment to the email

	There's more...

	Sending SMS notification to the end user using the Twilio service
	Getting ready
	How to do it...
	How it works...

	Chapter 3: Seamless Integration of Azure Functions with Other Azure Services
	Introduction
	Using Cognitive Services to locate faces from the images
	Getting ready
	Creating a new Computer Vision API account
	Configuring App settings

	How to do it...
	How it works...
	There's more...

	Azure SQL Database interactions using Azure Functions
	Getting ready
	How to do it...
	How it works...

	Processing a file stored in OneDrive using an external file trigger
	Getting ready
	How to do it...

	Monitoring tweets using Logic Apps and notifying when popular users tweet
	Getting ready
	How to do it...
	Create a new Logic App
	Designing the Logic App with Twitter and Gmail connectors
	Testing the Logic App functionality

	How it works...
	See also

	Integrating Logic Apps with Azure Functions
	Getting ready
	How to do it...
	There's more...
	See also

	Chapter 4: Understanding the Integrated Developer Experience of Visual Studio Tools for Azure Functions
	Introduction
	Creating the function app using Visual Studio 2017
	Getting ready
	How to do it...
	How it works...
	There's more...

	Debugging C# Azure Functions on a local staged environment using Visual Studio 2017
	Getting ready
	How to do it...
	How it works...
	There's more...

	Connecting to the Azure Cloud storage from local Visual Studio environment
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Deploying the Azure Function app to Azure Cloud using Visual Studio
	How to do it...
	There's more...
	See also

	Debugging live C# Azure Function hosted on the Microsoft Azure Cloud environment using Visual Studio
	Getting ready
	How to do it...
	See also

	Chapter 5: Exploring Testing Tools for the Validation of Azure Functions
	Introduction
	Testing Azure Functions
	Getting ready
	How to do it...
	Testing HTTP triggers using Postman
	Testing Blob trigger using the Microsoft Storage Explorer
	Testing Queue trigger using the Azure Management portal

	There's more...

	Testing an Azure Function on a staged environment using deployment slots
	How to do it...
	There's more

	Load testing Azure Functions using VSTS
	Getting ready
	How to do it...
	There's more...
	See also

	Creating and testing Azure Function locally using Azure CLI tools
	Getting ready
	How to do it...

	Testing and validating Azure Function responsiveness using Application Insights
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 6: Monitoring and Troubleshooting Azure Serverless Services
	Introduction
	Monitoring your Azure Functions
	Getting ready
	How to do it...
	There's more...

	Monitoring Azure Functions using Application Insights
	Getting ready
	How to do it...
	How it works...
	There's more ...

	Pushing custom telemetry details to analytics of Application Insights
	Getting ready
	How to do it...
	Creating AI function
	Configuring access keys
	Integrating and testing AI query
	Configuring the custom derived metric report

	How it works...
	See also

	Sending application telemetry details via email
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Integrating real-time AI monitoring data with Power BI using Azure Functions
	Getting ready
	How to do it...
	Configuring Power BI with dashboard, dataset, and push URI
	Creating Azure AI real-time Power BI - C# function

	How it works...
	There's more...

	Chapter 7: Code Reusability and Refactoring the Code in Azure Functions
	Introduction
	Creating a common code repository for better manageability within a function app
	How to do it...
	How it works...
	There's more...
	See also

	Shared code across Azure Functions using class libraries
	How to do it...
	How it works...
	There's more...
	See also

	Azure Functions and precompiled assemblies
	Getting ready...
	How to do it...
	Creating a class library using Visual Studio
	Creating a new HTTP trigger Azure Function

	How it works...
	There's more...
	See also

	Migrating legacy C# application classes to Azure Functions using PowerShell
	Getting ready
	How to do it...
	Creating an application using Visual Studio
	Creating a new PowerShell Azure Function

	How it works...
	See also

	Using strongly typed classes in Azure Functions
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 8: Developing Reliable and Durable Serverless Applications Using Durable Functions
	Introduction
	Configuring Durable Functions in the Azure Management portal
	Getting ready
	How to do it...
	There's more...
	See also

	Creating a hello world Durable Function app
	Getting ready
	How to do it...
	Creating HttpStart Function - the Orchestrator client
	Creating Orchestrator function
	Creating Activity function

	How it works...
	There's more...
	See also

	Testing and troubleshooting Durable Functions
	Getting ready
	How to do it...
	See also

	Implementing multithreaded reliable applications using Durable Functions
	Getting ready
	How to do it...
	Creating Orchestrator function
	Creating Activity function GetAllCustomers
	Creating Activity function CreateBARCodeImagesPerCustomer

	How it works...
	There's more...
	See also

	Chapter 9: Implement Best Practices for Azure Functions
	Adding multiple messages to a Queue using the IAsyncCollector function
	Getting ready
	How to do it...
	How it works...
	There's more...

	Implementing defensive applications using Azure Functions and Queue triggers
	Getting ready
	How to do it...
	CreateQueueMessage - C# Console Application
	Developing the Azure Function - Queue trigger
	Running tests using the Console Application

	How it works...
	There's more...

	Handling massive ingress using Event Hub for IoT and similar scenarios
	Getting ready
	How to do it...
	Creating an Azure Function Event Hub trigger
	Developing a Console Application that simulates IoT data

	Enabling authorization for function apps
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Controlling access to Azure Functions using function keys
	How to do it...
	Configuring the function key for each application
	Configuring one host key for all the functions in a single function app

	There's more...
	See also

	Chapter 10: Implement Continuous Integration and Deployment of Azure Functions Using Visual Studio Team Services
	Introduction
	Prerequisites

	Continuous integration - creating a build definition
	How to do it...
	How it works...
	There's more...
	See also

	Continuous integration - queuing the build and trigger manually
	Getting ready
	How to do it...
	See also

	Configuring and triggering the automated build
	How to do it...
	How it works...
	There's more...
	See also

	Creating a release definition
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Trigger the release automatically
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Index

